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ABSTRACT

Real-world experiments [1, 2] have shown that wireless sensor networks exhibit certain

traffic patterns where events of interest have been noticed to cause a burst of activity at

nodes propagating the information over the network. However, bursts of activity from mul-

tiple transmitters in a neighborhood results in energy wastage due to collisions. Current

protocols use RTS-CTS handshakes to avoid collisions and alleviate the hidden terminal

problem. However such a solution is neither efficient nor reliable for WSNs. Thus, moti-

vated by the goal of reliable data transmission using minimum power, we propose RoBcast

- a round based solution for reliably broadcasting data over a single-hop using information

from detected collisions. The link-level reliability of RoBcast can form the building block

upon which future applications and protocols can be designed for WSNs.
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Chapter 1

Introduction

Recent advances in low-power wireless radios and MEMS technology has made it fea-

sible to deploy large-scale wireless ad hoc networks for real-world application scenarios.

Several wireless ad hoc networks, specifically wireless sensor networks (WSNs), have been

deployed in recent experiments. For example, scientific data has been collected from WSNs

deployed, for monitoring the nesting behavior of endangered birds in a remote island [1],

for monitoring the temperature and humidity in vineyards [2], for sniper localization [3],

and for classification and tracking of trespassers [4, 5].

1.1 Motivation

Such real-world experiments have provided valuable scientific data and has provided us

with a better understanding of the working of WSNs. Different communication patterns

have been identified. The goal of these experiments is to reliably report data, while con-

suming the least amount of power [6]. In this paper, we look at the design of RoBcast, a

1



CHAPTER 1. INTRODUCTION 2

MAC layer protocol for reliable delivery of messages for the most common communication

pattern, broadcast.

Although support for reliable unicast using RTS/CTS handshake has existed tradition-

ally in 802.11 [7] and in sensor network MAC layer protocols [8], there has not been any

support for reliable broadcasting. Popular wireless sensor network MAC protocols [6, 8]

provide best effort delivery of broadcast packets. However, reliable communication over a

single hop is an essential component of the future [9]. Reliable packet delivery is essential

in sensor/actuator networks where all nodes need to consistently reach a consensus. For ex-

ample, robotic highway safety/construction markers [10] have to consistently take correct

decisions, otherwise a robot cone that has an inconsistent view of the system could enter

in to traffic and create a significant hazard. As another example, sensor/actuator devices

coordinating regulator valves in a factory floor may need to take consistent decisions to

prevent a malfunction.

A major hurdle for reliable delivery is the hidden node problem, where simultaneous

transmissions from two transmitters outside each other’s carrier sensing range collide at

the receiver node. There have been many studies [11, 12] showing the detrimental effects

of hidden node problem. In particular, more than 50% message loss has been reported

due to hidden node problem under bursty traffic loads in wireless sensor networks [13].

Current solutions for avoiding the hidden node problem revolve around acknowledgments

with RTS/CTS providing a partial solution for unicast transmissions.

Simple extensions of popular unicast protocols using RTS/CTS or acknowledg-

ments [14, 15, 16, 17] run into problems when applied to broadcast messages. Implosions

of the CTS and ACK packets at the source decreases efficiency. Performing handshakes

on a node-by-node basis similar to unicast can guarantee reliability. However the high
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communication overhead and difficulty in maintaining neighbor lists makes such protocols

unattractive. Solutions that use separate control channels/frequencies like BTMA [18] are

not suited to wireless sensor networks with a small footprint and energy constraints. Many

TDMA based approaches have also been proposed that provide reliable transmissions but

at the expense of unused bandwidth and energy.

1.2 Contributions

Our contribution is a reliable MAC level layer for broadcast, namely RoBcast, for low

power ad hoc wireless sensor networks.

In RoBcast, receiver side carrier sensing based collision detection techniques [19] are

used to reduce data loss. All nodes are synchronized to maintain a global synchronization

of rounds with each round having three phases: RTS, NCTS and Data phase. If a node j

has data to transmit, a request for transmission (RTS) is sent by j during the RTS phase.

Neighboring nodes respond to an invalid RTS or collided RTS’s by transmitting a not clear

to send message (NCTS) during the NCTS phase. The transmitter backs off from transmit-

ting the data for this round if it either receives a NCTS message or detects a collision in

the NCTS phase. This avoids potential collision of data during the Data phase, and ensures

reliable delivery of the payload within single-hop distance of the transmitting node.

Secondly, RoBcast - a synchronized round based protocol implements controlled sleep

periods to improve power efficiency of the system by turning the radio off when possible.

Synchronization can be achieved efficiently by using a time synchronization protocol [20,

21], or an ad hoc mechanism based on a sync packet for each round in [8].



CHAPTER 1. INTRODUCTION 4

In order to compare the performance of RoBcast with other Broadcast protocols, simu-

lations were performed in Prowler [22]. The results are presented in Chapter 5.

With the increasing interest within the research community in wireless sensor networks

and numerous protocols being designed, many papers have looked at the current issues in

the field [9, 23]. One of the more important problem at hand being the lack of a system

architecture for sensor networks. [9] presents such an architecture, the SensorNet Protocol

and has identified - single-hop broadcast communication as the “narrow-waist” for WSN’s

analogous to IP [24] for Internet protocols. We believe that a reliable broadcast service,

such as RoBcast, will serve as the building block and provide a platform for the develop-

ment of future protocols and applications.

1.3 Organization

After the related work section, in Chapter 2 we look at previously published work related

to RoBcast. We introduce preliminaries like notation, terminology, model and discuss our

program and network model briefly in Chapter 3. We present our RoBcast protocol and a

formal proof of correctness in Sections 4.1 and 4.2 respectively. Extensions to the proto-

col are discussed in Section 4.4. Chapter 5 presents our simulation results that compare

performance of RoBcast with other reliable and unreliable broadcast solutions. Experi-

ments performed in the lab using motes are described in Chapter 6. Finally, conclusion and

suggestions for future work are in Chapter 7.



Chapter 2

Related Work

In this section we review previous work on reliable broadcast protocols.

In Robust Broadcast[25], the author selects a neighboring node as a collision detec-

tor and performs a RTS-CTS handshake to take control of the channel before a broad-

cast. However, this does not necessarily guarantee that collisions are absent at other nodes.

The hidden node problem still remains and may affect other neighboring node. Tang and

Gerla[14] proposed a simple extension to IEEE802.11 to support broadcast. The extension

incorporates CA and RTS/CTS control frames similar to unicast schemes. A source broad-

casts RTS after a CA phase and sets the WAIT FOR CT S timer for back-off. Neighbors

not in YIELD state reply with a CTS and set the WAIT FOR DATA timer. The source node

expects a CTS from any of its neighbors before transmitting DATA. Nodes not involved in

the broadcast set their state to YIELD if they receive a CTS.

In BSMA[15], the authors extend [14] by incorporating negative acknowledgments

(NAK). If neighbors do not receive DATA after transmitting a CTS, the WAIT FOR DATA

5
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expires and they transmit a NAK. The source backs off upon receiving a NAK and retrans-

mits DATA .

However, these protocols [14, 15] require DS (direct sequence) capture ability which

enables the radio to lock to a sufficiently strong signal in the presence of interfering signals.

In [14], the authors also present a variation for radio’s without DS by detecting busy

channels when multiple transmitters are active. This information is then used by the source

to back off before transmitting DATA.

BMW [16] provides reliable broadcast using RTS-CTS-DATA-ACK handshakes with

each neighbor individually in round robin while reverting to IEEE802.11 under high chan-

nel contention.

BMMM [17] improves BMW by broadcasting the DATA packet only once. The source

reserves the channel using a RTS-CTS handshake with each of its neighbors, broadcasts

the DATA and requests acknowledgments from each neighbor individually.

BMW and BMMM thus deliver the message eventually but with individual transactions

with its neighbors. The disadvantages of these schemes is the high latency, control overhead

and, maintenance of a neighbor table.

BTMA [18] prevents collisions by maintaining a separate radio channel for control

information. A busy tone is transmitted by the receiver if currently receiving data. A

source transmits data only if the control channel is idle, thus avoiding collisions and hidden

terminals. However, energy and space constraints make the implementation of a separate

radio/frequency difficult to achieve in wireless sensor networks.

TDMA protocols provide collision free medium access. A network of N nodes demands

a schedule of N time slots with a dedicated time slot for each node. Nodes transmit data
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during their allocated time slot, hence effectively avoiding collisions. However such a sys-

tem requires efficient time synchronization for the entire network. Changes in the network

topology requires a modification in the schedule or slot allocation. Finally, static alloca-

tion of slots can leave many slots unused reducing the throughput of the network. Many

protocols have been proposed to improve pure TDMA [26, 27, 28, 29, 30, 31, 32, 33].

The Adaptive Broadcast protocol (ABROAD)[32] is one such TDMA based protocol

which integrates CSMA/CA within each time slot in a frame. The nodes are assumed to

be capable of determining 0, 1 or multiple transmissions in the channel corresponding to

idle, successful reception and a collision respectively. The protocol works with the source

broadcasting a RTB (Request To Broadcast) in its assigned time slot. Neighbors upon

receiving the RTB, reply with a CTB (Clear To Broadcast) thus informing nodes up to 2

hops from source of the transmission. If a slot is idle during the sensing interval, other

nodes may try to claim the slot by transmitting a RTB. If a collision is detected - nodes

reply with a NCTB (Not Clear To Broadcast). Upon detection of no NCTB or collisions,

the channel is identified as free and the node that sent a RTB uses the slot, else it defers

its transmission to its assigned slot or contends for other idle slots. AGENT [33] improves

ABROAD by transmitting a CTS for unicast messages during the CTB/NCTB phase, thus

providing a mechanism to deliver both unicast and broadcast messages reliably.

Avoiding the overheads of allocating a time slot for every single node in a schedule

designed for the entire network, we can design a round based system that takes advantage

of the synchronous nature of TDMA based protocols, while allowing for the flexibility

of random-access protocols. RoBcast is a such a protocol, which proves that there is a

significant advantage in using a time synchronized, round based transmission schedule.

The round based algorithm allows the nodes to select the transmitting node in a random
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fashion based on RTS and (N)CTS control messages.



Chapter 3

Preliminaries

In this chapter, we introduce the basic concepts used hereafter.

3.1 Notation & Terminology

Program

A program is said to consist of a set of variables and actions at each node. We use the

notation vi.x to denote a program variable x residing at the node vi. The set of all variables

and their values at a given time-point defines the state of a program.

9
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Action

Each action has the form:

< guard > −→ < statement >

A guard is a boolean expression over variables. An action whose guard evaluates to T RUE

in a particular state is said to be enabled for that state and is executed.

Statement

An assignment statement updates one or more variables. When a node uses its radio

to transmit a message, the message is broadcast over the channel. Hence, we use the

terms transmit and broadcast interchangeably and denote a message broadcast statement as

bcast(msg). Message transmissions, unless specified explicitly as “unicast”, always mean

a broadcast. Similarly, successful reception of a message at a node is denoted by the state-

ment receive(msg). However, the receipt of a collision is represented by the statement

receive(±).

Formulae

A formula (op j : R. j : X . j) denotes the value obtained by performing the (commutative

and associative) op on the X . j values for all j that satisfy R. j. As special cases, where op is

conjunction, we write (∀ j : R. j : X . j), and where op is disjunction, we write (∃ j : R. j : X . j).

Thus, (∀ j : R. j : X . j) may be read as “if R. j is true then so is X . j”, and (∃ j : R. j : X . j) may

be read as “there exists an j such that both R. j and X . j are true”. Where R. j is true, we
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omit R. j.

3.2 Network Model

We consider a mesh topology that is represented by a graph G(V,E), where V and E are

the set of all nodes and links in the network respectively. The network is said to consist of

N stationary nodes identified by v1, v2 . . . , vN .

The set of all single hop neighbors of vi is represented as Nbr(vi). Any node vk is said

to be a single hop neighbor of a node vi iff vk can establish bi-directional links directly with

vi i.e., < vi,vk >∈ E and < vk,vi >∈ E. It is to be noted that vk /∈ Nbr(vk).

From this definition, it is follows that any node in the neighborhood of vi will have vi in

its neighborhood.

vi ∈ Nbr(vk)≡ vk ∈ Nbr(vi)

The set of all nodes that can be reached by vi in two hops is denoted as Nbr2(vi) and

defined as follows:

(
⋃

v j : v j ∈ Nbr(vi) : (Nbr(v j)− (Nbr(vi)∪ vi)))

The network is assumed to be dense enough for any transmitter, vi, to possess atleast

one receiver in its neighborhood Nbr(vi). Also, neighbors are assumed to always have a

common neighbor as represented by the below formula.

(∀vi,v j : v j ∈ Nbr(vi) : (Nbr(vi)∩Nbr(v j)) 6= NULL)



CHAPTER 3. PRELIMINARIES 12

Radio

Each node possesses an omni directional radio that is half duplex. Its transmit power is

maintained constant at all times. The radio is also assumed capable of performing carrier

sensing to detect channel activity. These characteristics are satisfied by the commonly used

Chipcon radios [34] satisfy these conditions.

Traffic

We assume all traffic consists of broadcast messages, where each message is addressed

by default to all nodes in the neighborhood and discuss later, an extension to ensure the

reliable delivery of unicast messages.

3.3 Fault Model

We consider a system where faults can occur arbitrarily. Nodes may fail, stop and crash -

corrupting the state of a node. Arrival of new nodes or changes to the topology are con-

sidered as transient faults. Moreover, the channel might corrupt messages due to collision,

fading or interference. We have not attempted to maintain any distinction between the dif-

ferent kinds of failure. With such a fault model, we state that a program is self-stabilizing

iff after faults stop occurring, the program eventually recovers from a arbitrary state to a

state where its specification is satisfied.
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3.4 Collision Detection

Since each message is addressed to all nodes in the neighborhood, we treat any loss of

data, due to bit errors or collision of transmitted messages, as a collision. Though protocols

presented in [32, 33, 35] utilize the information of detected collisions in simulations, there

is no previously mentioned attempt at detecting collisions using motes.

Carrier sensing, physical and virtual, has been widely employed in wireless devices to

detect and avoid collisions. Traditionally in MAC layers like IEEE 802.11, IEEE 802.15.4,

and most wireless sensor network MAC protocols, carrier sensing has been used primar-

ily at the transmitters: If a node wants to transmit DATA, it first senses the medium for

any activity in the channel, and begins transmission only if there is no activity. This tech-

nique however is not very effective, as the collision occurs at the receiver and the physical

carrier sensing at the transmitter does not realize the possible collisions at the receiver’s

radio. Hence the motivation to design RoBcast to sense the medium at the receiver while

informing the transmitter of possible collisions.

Figure 3.1: The variation in channel energy between noise and data. source:[6].

Using physical carrier sensing, nodes can differentiate between genuine activity, such

as a message or collision, and noise based on the variance in the channel energy. When
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there is genuine activity on the channel, there is a fairly constant channel energy which

stays above the noise floor. Random noise exhibits significant variance in channel energy

which can be identified by occasional pits below the noise floor as illustrated in Figure 3.1.

Further, we can identify collisions if a node in the idle state (when it is not transmitting

or receiving a message, or synchronizing to receive a message) detects, using its carrier

sensing mechanism, an intense activity on the medium. In our preliminary experiments

with the Mica2 mote platform [34], our sensing mechanism searches for the pits in the idle

state and detects genuine activity in the radio if a pit is not found for a long period. We find

that our receiver side carrier-sensing based collision detection performs well and detects

more than 95% of the collisions accurately.

3.5 Synchronization

The popularity of TDMA protocols and the advantages of maintaining synchronized time

on individual nodes has lead to a lot of research on synchronization in a Ad Hoc network.

Various protocols [20, 21, 36] have been developed for synchronization in sensor networks.

Some protocols like S-MAC [8] utilize a SYNC packet as part of their protocol to synchro-

nize the individual nodes sleep schedules. Real world experiments [3] have proved that it

is possible to obtain a fine level of time synchronization using such protocols.

However, round synchronization does not require all the nodes to have a global view of

time. It has been noted in [37] that round synchronization can be achieved with gradient

synchronization instead of a global synchronization.

RoBcast, could use such a round level synchronization. Given any two nodes vi and v j,

both nodes are assumed to have the same global view of rounds i.e., rounds start (and end)



CHAPTER 3. PRELIMINARIES 15

at the same time on both nodes as illustrated in Figure 3.2.

...

v RTS NCTS DATA RTS NCTS DATA ...

jv RTS NCTS DATA RTS NCTS DATA ...

iv RTS NCTS DATA RTS NCTS DATA

k

Figure 3.2: Synchronized rounds in RoBcast

Round synchronization for RoBcast can be achieved using different algorithms.

• Time Synchronization: Using algorithms defined in [20, 21, 36], we can achieve

fine grained time synchronization between all the nodes clocks. Then, after the

rounds start, the time synchronization protocol’s messages can be transmitted using

RoBcast.

• Beacon: For a single hop neighborhood, it may be possible to use a initiator node

that sends a start message for each round.

• Ad Hoc Synchronization: It may be possible to achieve a lightweight ad hoc round

synchronization by exploiting the schedule of the messages.



Chapter 4

Protocol

In this section, we present RoBcast, a reliable broadcast protocol and provide a formal

proof of correctness, showing that RoBcast eliminates the hidden node problem. We also

prove that RoBcast is self-stabilizing in the face of arbitrary state corruptions, and dis-

cuss extensions to RoBcast for achieving energy-efficiency and ad hoc, on-demand round-

synchronization.

4.1 Protocol Description

Each node vi maintains a single variable, status. vi.status has a domain of {idle, candidate,

transmit, veto}. As a shorthand, we use vi.x to denote vi.status=x. vi.candidate means vi

wants to transmit a message, and, vi.transmit means vi has exclusive access to the channel

and it will be transmitting the rest of its packets in the DATA phase of consecutive rounds.

vi.veto implies that there exists multiple candidates in Nbr(vi), and vi will veto the can-

didates from becoming transmitters. If none of the above holds for vi, vi.idle is true by

16
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default. Initially for all vi, vi.status = idle.

The variable “phase” is an external variable (provided by a round synchronization ser-

vice), notifying vi of which phase of the round, RTS, NCTS or DATA, vi is in. All the nodes

have a consistent view of the phase variable due to our round synchronization requirement.

As seen in Figure 4.1, RoBcast consists of six actions as explained below.

Action 1 is enabled in the RT S phase when a node has data to be sent and needs access

to the channel. This happens either when an idle node has new data to be transmitted, or

when a node is in the transmit state during a multi-part message’s transmission. In case

the node is transmitting the first message, i.e. state := idle, the node transits to candidate

state.

Action 2 is enabled in the RT S phase when a node is idle and is not transmitting data in

this round. While listening to the channel for activity any collision detected indicates colli-

sion of RT S messages. In this case, the node detects the existence of multiple transmitters

in its single-hop neighborhood, and goes to veto state to block a candidate from going to

transmit state. If an RT S message is successfully received, the number of packets of the

data message to be received as part of this transmission is stored in data to receive.

Action 3 is enabled in the NCT S phase when a node is in the veto state. Upon execution,

the node broadcasts a veto message in the format of a NCT S message1.

Action 4 is enabled in the NCTS phase for a node vi in the candidate state. If vi receives

an NCT S message or detects a collision, v j backs off from the transmission and transits to

idle state.

Action 5 is enabled in the DATA phase when a node vi’s state is candidate or transmit.

vi’s state is set to transmit and the DATA message is broadcast. If the data to send field

1Switching from transmission to listening is on the order of microseconds, hence the feasibility of this
scheme[6].
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(1) phase=RT S∧ (vi.data to send > 0)∧ (vi.data to receive == 0)

−→ bcast(RT S)
if (vi.idle)
then vi.state := candidate

[]
(2) phase=RT S ∧ vi.idle ∧ (vi.data to send == 0 ∨ vi.back off == T RUE)

−→ if (receive(±))
vi.state := veto

else if (receive(msg))
vi.data to receive := msg.data to receive

[]
(3) phase=NCT S ∧ vi.veto

−→ bcast(NCT S)
vi.state := idle

[]
(4) phase=NCT S ∧ vi.candidate ∧ receive(± or msg)

−→ vi.state := idle

[]
(5) phase=DATA ∧ (vi.candidate ∨ vi.transmit)

−→ vi.state := transmit

bcast(msg)
vi.data to send := vi.data to send−1
if vi.data to send == 0
then vi.status := idle

[]
(6) phase=DATA ∧ (vi.idle∧ vi.data to receive > 0)

−→ receive(msg)
if (receive timeout)
vi.data to receive := 0

else
vi.data to receive := vi.data to receive−1

Figure 4.1: Program actions for j.
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of the message indicates that all packets as part of this message have been transmitted, vi

transits to idle state.

Action 6 is enabled in the DATA phase when a node vi’s state is idle. If

data to receive > 0 from Action 2, the node expects packets to arrive and receives

the part of the message that has been transmitted. However, in case a candidate receives

an NCT S during the NCT S phase and backs off via Action 4, a timeout occurs in Action

6 because of the absence of a transmitter. In this case the data is not received by the node

and the its status is set to idle.

candidate

transmit

idleveto

Action 3

Action 2

Action 5

Action 4

Action 1

Action 5

Action 5

Action 2, 6

Figure 4.2: The effect of actions on the status variable.

Figure 4.2 illustrates the effect of actions on the status variable of a node. Note that

Actions 1, 2 are enabled only in the RTS phase, Actions 3, 4 are enabled only in the NCTS

phase, and Action 5, 6 are enabled only in the DATA phase.
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4.2 Correctness proof

We can now prove Lemma 4.1 about contending nodes. Lemma 4.1 states that if at the

beginning of a round’s RTS phase, for any node vi there exists no node in its neighborhood

v j, v j ∈ Nbr(vi), such that v j.transmit, then there can exist only one node, vk, with access

to the channel during the DATA phase of that round.

Lemma 4.1. (Leader election) If (∀vi : vi ∈ G : (∀v j : v j ∈ Nbr(vi) : ¬v j.transmit)) in the

beginning of a round, then (∀v j,vk : v j,vk ∈Nbr(vi) : (v j.transmit∧vk.transmit) =⇒ v j =

vk) in the DATA phase of that round.

Proof. If at the beginning of a round, none of the neighbors of a node vi are in the transmit

state, they can transit to such a state only after contending for the channel during the RT S

and NCT S phase of that round. Let us consider the situation where v j and vk, two neigh-

boring nodes of vi, contend during the RT S phase by transmitting a RT S message. This

will only result in a collision at the receiver vi, which will veto both the “candidates”, v j

and vk, to idle state. Hence, when all nodes are idle initially, during the DATA phase of

that round, if v j.transmit and vk.transmit then v j = vk.

So starting from a initial state where all the nodes are in idle state, it is possible to have

only one transmitter in the neighborhood of a particular given node.

If the transmitting node has multiple packets to be transmitted as part of this message,

it will retain access over the channel until all the packets are transmitted successfully. In

order for this to happen reliably, no other candidate must be allowed to go to transmit

state.

Lemma 4.2 states that if at the beginning of a round, for any node vi there exists a node

v j ∈ Nbr(vi), such that v j.transmit, then there will exist only one node, v j, with access to
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the channel during the DATA phase of that round.

Lemma 4.2. (Leader preservation) If (vi : vi ∈ G : (∃v j : v j ∈ Nbr(vi) : v j.transmit)) in

the beginning of a round, then (∀vk : vk ∈ Nbr(vi) : vk.transmit =⇒ vk = v j) in the DATA

phase of the round.

Proof. If v j and vk are two neighboring nodes of vi such that at the beginning of the round

v j.transmit and vk.idle. During the RT S phase both nodes transmit a RT S message re-

sulting in a collision at the receiver vi, which will broadcast a veto message during the

following NCT S phase. On receipt of a veto message, vk transits from candidate to idle

state whereas v j remains unaffected (since it already has exclusive access to the channel).

Hence, during the DATA phase, only v j remains in the transmit state within the single-hop

neighborhood of vi in the system.

We now prove that in RoBcast there exists no hidden node, i.e for any given node, there

can exist at most one transmitter in its single-hop neighborhood. Theorem 4.3 states that if

I1 and I2 hold, there can be at most one node within single-hop of a node vi that has access

to the channel in the DATA phase of any round.

Theorem 4.3. (No hidden node) Let I1 denote phase = DATA∧ (∀vi : vi ∈ G : (∀v j,vk :

v j,vk,∈Nbr(vi) : v j.transmit∧vk.transmit =⇒ v j = vk)). I1 is an invariant of the RoBcast

protocol.

Proof. I1 follows from Lemma 4.1 and Lemma 4.2. Lemma 4.1 states that, in the ab-

sence of faults, starting from initial states, it is always the case that a node has at-most one

neighbor in transmit state. Lemma 4.2 states that, in the absence of faults, if there exists a

node in the middle of a multi-packet transmission, it will remain the only node in transmit



CHAPTER 4. PROTOCOL 22

state during its transmission. Hence, when there exists a transmitter, no other candidate is

allowed to transit to the transmit state. That is, I1 is preserved always.

The absence of hidden nodes ensures that the corruption of transmissions is decreased.

However, for a time synchronized system to reliably deliver data, along with the absence

of collisions the intended recipients must be ready to receive data.

Lemma 4.4 states that, it is always the case that if there is a node vi is in transmit state,

then all nodes in Nbr(vi) will be idle and hence receive data during the DATA phase.

Lemma 4.4. Let I2 denote phase = DATA ∧ (∀vi : vi ∈ G : (∃v j : v j ∈ Nbr(vi) :

v j.transmit) =⇒ vi.idle). I2 is an invariant of the RoBcast protocol.

Proof. From Lemma 4.1 and Lemma 4.2 it follows that, in the absence of faults, starting

from initial states, it is always the case that a node has at-most one neighbor in transmit

state. Hence, if there exists a node v j in transmit state in Nbr(vi), then vi cannot be in

transmit state. Also, any node that is in the veto or candidate state during the NCT S

phase, cannot remain in the same state at the end of the phase. Thus, I2 is preserved and vi

is always in the idle state if there exists a one-hop neighbor in transmit state.

4.3 Self-stabilization

As we prove in Lemma 4.3 and Lemma 4.4, in the absence of faults, starting from initial

states, I1 and I2 hold for RoBcast and, hence, from Theorem 4.3 we conclude that RoBcast

eliminates the hidden node problem. However, due to faults, such as transient memory cor-

ruption, message loss, or changes in network topology, I1 and I2 can be violated. Here, we

show that RoBcast protocol is self-stabilizing, that is, starting from any arbitrary state, after
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the faults stop occurring (i.e., no faults occur for a period sufficient enough for stabilization)

RoBcast starts satisfying its specification.

We prove Theorem 4.5 by proving that starting from any arbitrary state RoBcast

converges to its initial state in finite time where I1 and I2 are satisfied. More specif-

ically, I1 and I2 are re-established within at most max message length rounds, where

max message length denotes the maximum number of packets that a message can span.

Note that once the invariant I1 and I2 is satisfied, Theorem 4.3 states that the hidden-node

problem is eliminated in the DATA phase of the subsequent rounds.

Theorem 4.5. (Self stabilization) RoBcast is self-stabilizing.

Proof. Our proof is by demonstrating a variant function g that always decreases outside

the invariant states.

g: <number of transmitters within single-hop of a node k>

We show below that g always decreases until a state where g = 〈0〉). We first show

that g cannot increase by considering all possible transitions of a node vi that attempts to

transmit DATA. If vi is in the idle state in the RT S phase, then it can remain so or move to

candidate or veto states. If vi is in the idle states in the NCT S phase, then it remains so at

the beginning of the DATA phase of that round. If vi.veto holds during the NCT S phase,

then the node after transmitting a NCT S message transits to idle state when the DATA

phase begins. If vi.candidate holds during the NCT S phase, and g 6= 〈0〉, then depending

on whether any of the nodes in Nbr(vi) were in veto state, vi can transit to either transmit

or idle state at the beginning of the DATA phase of that round. But, g 6= 〈0〉 implies the

existence of a node in the neighborhood that received a collision of RT S messages and

hence in veto state during the NCT S phase. Thus vi.candidate is blocked from moving to
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transmit state and becomes idle during the DATA phase. The situation where all the nodes

in the neighborhood are transmitting an RT S at the same instant is avoided by having each

node carrier sense, as specified in the radio model 3.2, during the RT S phase and back off

before transmitting an RT S.

We now show that g decreases. Due to the upper bound on the max message length,

a node can remain in transmit state only for a finite number of rounds. Hence, the

remaining length o f message always decreases after each round. Therefore, within at

most max message length rounds, g reduces to 〈0〉, which is the initial state where both

I1 and I2 are satisfied.

4.4 Extensions

Here, we discuss some extensions that could be applied to the RoBcast protocol.

When a node is listening to the channel, it spends as much energy as transmitting [6].

Therefore, it is important to reduce any idle listening in our MAC protocol. The primary

advantage of a TDMA based protocol in WSNs is the energy efficiency due to lack of col-

lisions and the possibility to put nodes on a synchronized sleep schedule. Though RoBcast

is not TDMA based, we can reap the benefits of round-synchronization. To this end, we

can extend RoBcast so that when a node, vi, detects that it is not receiving any message

transmission in the beginning of a DATA phase, it can turn off its radio, set a timer, and

sleep for the rest of the DATA phase. Later, upon expiration of its timer, vi can wake up

at the beginning of the RT S phase. Similarly, when a contending node vi is deferred from

access to the channel via Action 4, vi can turn off its radio and sleep until the beginning of

the next round’s RT S phase. This allows the node to sleep during the DATA phase - up to
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90% of the round duration. This kind of energy savings is highly attractive for battery op-

erated wireless sensor nodes. In future work, using PowerTOSSIM [38], we will quantify

the energy-savings we achieve by eliminating idle-listening as mentioned.

Secondly, it is possible to extend RoBcast to also support unicast messages with a

simple extension as in [33]. To achieve this, we introduce a third type of packet - CT S

message that can be transmitted during the NCT S phase. In case of a successful receipt

of a unicast message, a node replies with a CT S message if it is the intended receiver.

Any possible interference caused by the transmitter in its neighborhood, by this unicast

transmission will be avoided by an NCT S response from its neighbors. Thus, the receipt

of a CT S at the transmitter gives the go ahead and the unicast message will be transmitted.

If the transmitter does not receive an CT S message or receives a collision, it backs off due

to the possibility of corrupting parallel transmissions. This scheme will allow the RoBcast

protocol to reliably deliver both unicast and broadcast messages.



Chapter 5

Simulations

In Chapter 4, we presented the RoBcast protocol. With the aim of studying the feasibility of

implementing RoBcast and comparing its performance with other protocols, we simulated

the protocol in Prowler [22]. In this chapter, we present the results of the simulation. The

code used for the simulation is attached in Appendix A.

5.1 Preliminaries

Simulation setup

As stated before, the simulations were carried out in Prowler [22] with the network laid out

as a 5-by-5 grid of nodes, a total of 25 nodes. The traffic load was varied by varying the

number of nodes requesting to transmit data.

Simulations were conducted using both ideal and realistic Mica radio. In the former,

26
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Figure 5.1: Ideal radio’s characteristics.
source[22].

Figure 5.2: Realistic radio’s characteristics.
source[22].

transmissions are maintained free from external influences like noise as well as from multi-

path fading. A message in this environment can be lost only when it collides with another

message. However, in the realistic radio model, transmissions are subject to Rician fading

and multipath interference effects as well as collisions along with a 5% error probability

for each message reception.

The reported data for our experiments are values averaged over 10 independent runs for

each configuration.

Metrics

In our simulations we compare the performance of the various protocols over a period of

time. However, presenting the data collected against the simulation time does not reflect

the statistic accurately. Hence, we attempt to measure the time during which the network is

active with “settling time” which is defined as the duration between the last time a packet
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is received and the first time a packet is sent. We also define goodput as the rate at which

data bits are received by the nodes.

With these definitions in mind, we have compared the following metrics for the various

protocols.

• Throughput : This provides us an idea of the channel’s bandwidth usage and is

calculated as total number of bits received/settling time. .

• Goodput : Calculated as number of data bits received/settling time, goodput presents

the effective usage of the bandwidth for data bits, ignoring the effect of control bits.

• Message Latency : The time taken by a node with a message to transmit to actu-

ally propagate that message to its intended recipients is represented as the message

latency and is calculated as the delay in transmitting DATA since its first attempt to

transmit the data.

• Control Overhead : As the name suggests, this metric, calculated as number of

control bits transmitted/data bit received reflects the number of control bits required

for the successful transmission of a data bit.

• Total Loss of Packets : In our attempt to understand the performance of the protocol

we measure the number of data bits lost in the transmission as the number of unique

data packets received for each data packet transmitted. This metric is however differ-

ent from the number of collisions reported during a particular DATA phase, because

multiple receivers could report the collision of the same data packet. Here, we are

talking in terms of the transmitter, i.e., if a node transmits data, what is the probabil-

ity that none of the intended recipients receive the data. Thus, this metric relates well

to wireless sensor networks with heavy energy constraints where transmission and



CHAPTER 5. SIMULATIONS 29

reception of the longer data messages translates to the effective energy consumption

of the radio.

Table 5.1 presents the message format of the protocols compared. The data payload in

all the protocols is 960 bits long. In BEMA the CONTROL phase is for 100 bit-time. The

RTS/CTS/NCTS and all other control messages in RoBcast, BSMA and BMMM are 48

bits long, as implemented in SMAC [8]. It is to be noted that there are no control messages

in CSMA.

Control packets Data packets
CSMA 0 bits 960 bits
BSMA 48 bits 960 bits
BMMM 48 bits 960 bits
BEMA 100 bits 960 bits
RoBcast 48 bits 960 bits

Table 5.1: Message formats of the protocols.

5.2 Simulation Results

Throughput & Goodput

Figures 5.3 and 5.4 show the throughput for the protocols, while Figures 5.5 and 5.6 show

the goodput for the protocols under ideal and realistic radio, respectively. The smaller size

of the control packets, does not affect the effective throughput much. Hence the graphs for

goodput seem to be shifted down for the various protocols when compared to throughput,

with CSMA alone showing no change (due to the absence of control of packets).

CSMA does not attempt to provide any reliability, and transmits any data as soon as

it can without eliminating the hidden node problem. Hence, it offers the highest goodput



CHAPTER 5. SIMULATIONS 30

Throughput (Ideal Radio)
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Figure 5.3: Throughput in ideal radio model.

Throughput (Realistic Radio)
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Figure 5.4: Throughput in realistic radio model.
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Goodput (Ideal Radio)
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Figure 5.5: Goodput in ideal radio model.

Goodput (Realistic Radio)
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Figure 5.6: Goodput in realistic radio model.
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while suffering in reliability as seen in Figures 5.11 and 5.12. The goodput of BSMA

linearly decreases with respect to the number of transmitters, due to the corresponding

linear increase in the number of collisions. BMMM’ guarantees reliable delivery of data to

all neighbors (it ensures virtually no collisions), however, due to the individual handshakes,

a large synchronization overhead and latency is incurred which results in the low goodput.

BEMA has a high goodput among the protocols. BEMA attempts to elect leaders during

each of its rounds to reliably deliver data while decreasing collisions. It also scales well

with a increase in the number of transmitters. RoBcast however, pays the price for back-

offs in a round based system and has a high settling time - hence the lower goodput. Though

BEMA and RoBcast are round based, BEMA elects a leader always, hence providing better

goodput.

Message Latency

Figures 5.7 and 5.8 show the message latency for the protocols under ideal and realistic

radio, respectively. The results are similar in both graphs with BMMM’ having the highest

latency due to its individual handshake with each node. BSMA’s latency is the next highest.

This is because BSMA has to keep retransmitting the DATA until all its neighbors receive

the DATA, while the latency keeps on increasing since the first transmitted RTS. RoBcast’s

latency is quite low because the absence of collisions allows the data transmissions to go

through as soon as the network is idle. BEMA attains lower latency than RoBcast because

it elects an leader for every round while in RoBcast the back-off’s could schedule rounds

with no transmission in the neighborhood.
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Message Latency (Ideal Radio)
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Figure 5.7: Message Latency in ideal radio model.

Message Latency (Realistic Radio)
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Figure 5.8: Message Latency in realistic radio model.
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Control Overhead

Figures 5.9 and 5.10 show the control overhead for the protocols under ideal and realistic

radio, respectively. The results are similar in both graphs with increased overhead un-

der realistic radio, due to retransmissions. Since CSMA does not use control packets, its

overhead is zero at all times. BSMA and BMMM’ however, pay the penalty by using a

large number of control packets to detect the possibility of collisions, before transmitting

a data packet. In comparison to these protocols, RoBcast reaps the advantage of the round

synchronization and maintains a lower control overhead.

Total loss of packets

Figures 5.11 and 5.12 show the number of packets completely lost after transmission for the

protocols under ideal and realistic radio, respectively. The results are similar in both graphs

with increased collisions under realistic radio, possibly due to nondeterministic interfer-

ence among nodes and transmission error probability. Since CSMA employs no special

control messages to prevent collisions, the number of collisions is highest for CSMA due

to hidden node problem and the reliability linearly decreases with respect to the number of

transmitters. BSMA’s reliability hovers around 0.80 when the number of transmitters in the

network increases beyond 40% of the network size, i.e. 10 transmitters. BMMM’ shows

excellent reliability under ideal conditions as it requests individual acknowledgments from

the receivers to guarantee delivery. However, we notice a performance dip with realistic

radio. This happens in BMMM’ because, a transmitter that transmits data to its neighbor

after a RTS-CTS handshake requests an acknowledgment. However, if the request for ac-

knowledgment (RAK) or acknowledgment (ACK) is corrupted due to the realistic radio, the

bits transmitted during the entire handshake, data transmission is considered a lost effort.
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Control Overhead (Ideal Radio)
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Figure 5.9: Control Overhead in ideal radio model.

Control Overhead (Realistic Radio)
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Figure 5.10: Control Overhead in realistic radio model.
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Total Loss of Packets (Ideal Radio)
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Figure 5.11: Total loss of packets in ideal radio model.

Total Loss of Packets (Realistic Radio)
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Figure 5.12: Total loss of packets in realistic radio model.
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Hence, the low reliability. BEMA shows very few data collisions and offers high reliability,

which is by and large constant with respect to the number of transmitters. The data colli-

sions that arise could be due to selection of the same contention length or unidirectionality

in some links or non-deterministic interference among nodes. RoBcast, however, offers

the best reliability in comparison. This is because, RoBcast transmits a data packet only if

there is no contention in the channel for that round.

Radio’s power consumption

Figures 5.13 and 5.14 show the power consumption of the radio under ideal and realistic ra-

dio, respectively. RoBcast reduces the number of collisions and hence reduces the number

of repeated transmissions leading to fewer messages transmitted and received as compared

to the other protocols. Also, the power consumption of BEMA is the highest due to the

large number of BUSY packets required during the CONTROL phase. It must, however,

be noted that though the goodput of BEMA is higher than RoBcast, its power consumption

is much more than RoBcast.

5.3 Multi-Packet Transmissions

The simulations and results presented indicate that RoBcast is a highly reliable protocol that

eliminates collisions and transmits data reliably with a low control overhead and message

latency. However, in many applications there is a need to transmit data packets longer than

960 bits. Protocols like CSMA, BSMA, BMMM’ can take advantage of their non-TDMA

based system and change their packet size to transmit, while BEMA and RoBcast transmit

multiple packets as part of a single message. One would expect this to induce a overhead in
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Power Consumption (Ideal Radio)
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Figure 5.13: Radio’s power consumption in ideal radio model.

Power Consumption (Realistic Radio)
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Figure 5.14: Radio’s power consumption in realistic radio model.
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terms of latency and number of control bits transmitted per data bit. To look at these cases

further, we simulated the instance where nodes broadcast data of 960∗4 = 3860 bit length.

Control packets Data packets Number of Parts
CSMA 0 bits 4*960 bits 1
BSMA 48 bits 4*960 bits 1
BMMM 48 bits 4*960 bits 1
BEMA 100 bits 960 bits 4
RoBcast 48 bits 960 bits 4

Table 5.2: Message formats of the protocols for Multi-Packet Transmission.

The results show that RoBcast’s behavior in comparison to the other protocols is similar

to the single packet transmission case. The graphs are presented below in Figures 5.15 -

5.26

5.4 Discussion

When compared to Busy Elimination Multiple Access (BEMA), RoBcast should perform

better as it eliminates the hidden node problem completely. RoBcast is not susceptible to

the obstruction problem as depicted in Figure 5.27, a variant of the hidden node problem,

as it is based on a receiver side collision detection mechanism.

Also unlike protocols like [35], RoBcast does not transmit data if the virtual carrier

sensing fails, i.e. it detects collision. So the transmission semantics is “All or none” like

LBP [39] and BMMM [17]. This results in the loss of only the control packets and not data

packets, hence resulting in a better goodput.

However RoBcast will incur the overhead of reserving the channel over the entire neigh-

borhood of the transmitter unless its a broadcast transmission. This will result in poor
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Figure 5.15: Goodput in ideal radio model for multi-packet message.
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Figure 5.16: Goodput in realistic radio model for multi-packet message.
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Throughput (Ideal Radio)
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Figure 5.17: Throughput in ideal radio model for multi-packet message.

Throughput (Realistic Radio)

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

0 5 10 15 20 25
Number of Transmitting Nodes

Th
ro

ug
hp

ut
 (b

its
/s

ec
)

CSMA BSMA BMMMD BEMA RoBcast

Figure 5.18: Throughput in realistic radio model for multi-packet message.
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Message Latency (Ideal Radio)
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Figure 5.19: Message Latency in ideal radio model for multi-packet message.
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Figure 5.20: Message Latency in realistic radio model for multi-packet message.
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Control Overhead (Ideal Radio)
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Figure 5.21: Control overhead in ideal radio model for multi-packet message.
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Figure 5.22: Control overhead in realistic radio model for multi-packet message.
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Total Loss of Packets (Ideal Radio)
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Figure 5.23: Total loss of packets in ideal radio model for multi-packet message.
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Figure 5.24: Total loss of packets in realistic radio model for multi-packet message.
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Power Consumption (Ideal Radio)
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Figure 5.25: Power Consumption in ideal radio model for multi-packet message.
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Figure 5.26: Power Consumption in realistic radio model for multi-packet message.
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Figure 5.27: Obstacle arrangement where RoBcast solves the hidden node problem.

efficiency if a lot of unicast messages are transmitted - a price for reliability.



Chapter 6

Experiments

In this chapter we describe the various experiments conducted using mica2 [34] and tmote-

sky [40] in TinyOS [41]. The experiments were performed as a initial proof-of-concept for

the implementation of RoBcast.

6.1 Synchronization

As discussed in Chapter 4, RoBcast requires a synchronization mechanism that allows all

the nodes in the neighborhood to have a concept of rounds. To look at the usability of a

time synchronization algorithm, we compiled code to test FTSP [20] for mica2 motes and

synchronized 5 nodes. We noticed that FTSP has a initialization delay in the order of a few

minutes, after which the clocks remain synchronized. The maximum skew error in global

time for ftsp is reported in [20] to be below 67µs. The fine level of synchronization as

provided by FTSP is sufficient for RoBcast’s round requirements.

47
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6.2 Collision Detection

An important transition in RoBcast in the NCT S phase is based on the protocol detecting

collision of messages. Collisions, as stated before, can be differentiated from channel noise

by the channel energy. In view of this, we experimented with mica2 and tmote-sky motes

and implemented collision detectors.

6.2.1 Collision Detectors

Based on our classification of a collision on any loss of data, we implemented collision

detectors to raise a collision event if

• we receive a corrupt message as detected by CRC failure or bad packet length, or,

• we detect channel activity when the radio is not expected to receive any message.

6.2.2 Setup

For these experiments, we look at a single-hop network, and used a beacon mote to notify

neighboring motes the round boundary by means of a reference broadcast similar to [21].

On receipt of the SYNC message, the motes synchronize their clocks for the round. Apart

from the beacon, we used one mote to detect collisions, if any, caused by two transmitters.

The setup is shown in Figure 6.1.

We configured B-MAC [6] in TinyOS for our experiments and disabling B-MAC’s CCA

and acknowledgments. Since we wanted to control the exact transmission times, we reset

both the back-off timers - initial and congestion.
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Figure 6.1: Experiment setup

6.2.3 Experiments on Mica2

On the mica2 motes, strength of a received signal is obtained from the radio and stored in

the RSSI (received signal strength indicator) register. In our experiments, we polled the

register periodically for the RSSI values to detect channel activity. We looked at the RSSI

values to differentiate channel noise and activity in the channel. Channel noise captured is

shown in the figure 6.2

As seen, the channel noise is seen to be between -90 and -100 dBm. However, we also

noticed a increase in the channel energy of noise when other radio’s are turned on in the

neighborhood as shown in figure 6.3

Apart from such variations in noise levels, a realistic radio’s varying power of transmis-

sion can cause problems while detecting collisions. We assume that the transmission power

is maintained constant and attempted to detect collisions based on the detectors described.

In our proof-of-concept implementation, based on the B-MAC’s CCA, we detected channel

activity when there are transmissions in the channel. However, when the capture effect [42]
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Figure 6.2: Channel energy of noise

is present, we are unable to detect the loss of the weaker signal.

6.2.4 Conclusion of CD Experiments

From the current and past experiments we infer that while it is possible to detect most of

the collisions based on the RSSI of the signal using the CC1000, further experiments need

to be performed on other radios like CC2420.
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Figure 6.3: Increased channel energy of noise



Chapter 7

Conclusion & Future Work

We presented a self-stabilizing MAC protocol, Reliable Broadcast (RoBcast) protocol, that

solves the reliable broadcast problem. RoBcast provides on-demand access to the channel

using a RTS-NCTS handshake while taking advantage of the synchronous nature of the

round based system. By avoiding collisions during the DATA phase and eliminating the

hidden-terminal problem, RoBcast provides a useful building block for applications with

reliability requirements. Simulations show that RoBcast’s overhead is small and has the

least total packet loss among BEMA [43], BSMA [15], BMMM [17], and CSMA/CA [7].

In future work, we will implement RoBcast in TinyOS [41] on top of BMAC [6]. The

problem of differentiating fading and collisions still exists. The system will consider mes-

sage corruption due to fading - a fault and eventually stabilize. However, an elegant solution

will ideally handle collisions and data lost due to fading differently. We also need to look

carefully at how RoBcast can be extended to a multi-hop network. Though RoBcast will

stabilize and satisfy the specifications of the reliable broadcast problem - efficiency might

52
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be a concern. Nodes that have already received the packet might be involved in the neg-

ative feedback and degrade the performance. We will further investigate the performance

improvements RoBcast provides for handling bursty traffic patterns in sensor networks. We

will also work on a light-weight ad hoc synchronization scheme for implementing rounds

in RoBcast.
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Appendix A

Simulation File

0001 function application(S)
0002 % application to simulate RoBcast - a robust broadcast protocol.
0003
0004 S; %%%%%%%%%%%%%%%%%%% housekeeping %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0005 S; persistent app data
0006 S; global ID t
0007 S; [t, event, ID, data]=get event(S);
0008 S; [topology, mote IDs]=prowler(’GetTopologyInfo’);
0009 S; ix=find(mote IDs==ID);
0010 S; if ˜strcmp(event, ’Init Application’)
0011 S; try memory=app data{ix}; catch memory=[]; end,
0012 S; end
0013 S; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0014
0015 global N CTRL PKTS XMIT RBCAST;
0016 global N DATA PKTS XMIT RBCAST;
0017 global N DATA PKTS RCVD RBCAST;
0018 global N CTRL PKTS RCVD RBCAST;
0019 global N CTRL PKTS COL RBCAST;
0020 global N DATA PKTS COL RBCAST;
0021
0022 global DATA PKTS RCVD;
0023 global CTRL PKTS RCVD;

60
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0024
0025 global MSG ID;
0026 global ROUND ID;
0027
0028 global MSG LATENCY;
0029
0030 TRUE = 1;
0031 FALSE = 0;
0032
0033 MESSAGE LENGTH = 4;%ceil(rand*10);
0034 DATA PKT SIZE = 960;%*4;
0035 CTRL PKT SIZE = 48;
0036
0037 MAX BACKOFF ROUNDS = 5;
0038
0039 % ROUNDS
0040 % $$RTS$$ $$NCTS$$ $$DATA$$
0041 ROUND SIZE = 2*(CTRL PKT SIZE + 2) + (DATA PKT SIZE + 2);
0042
0043 %Type of PACKET
0044 PKT TYPE RTS = 0;
0045 PKT TYPE NCTS = 1;
0046 PKT TYPE DATA = 2;
0047
0048 %Type of TimeSlot
0049 RTS TS = 0;
0050 NCTS TS = 1;
0051 DATA TS = 2;
0052
0053 %State
0054 IDLE = 0;
0055 CANDIDATE = 1;
0056 VETO = 2;
0057 TRANSMIT = 3;
0058
0059 global LOG SCREEN
0060 global LOG FILE
0061
0062 LOG SCREEN = 1;
0063 LOG FILE = 2;
0064
0065 global LOG LEVEL
0066 %LOG LEVEL = bitor(LOG SCREEN, LOG FILE);
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0067 LOG LEVEL = 0;
0068 %LOG LEVEL = LOG FILE;
0069 %LOG LEVEL = LOG SCREEN;
0070
0071 global fid
0072 global logfile
0073 %logfile=’rbcast4 log’;
0074
0075 switch event
0076 case ’Init Application’
0077 if (LOG LEVEL ˜= 0)
0078 if (ID == 1)
0079 datetime = fix(clock);
0080 logfile = sprintf(’rbcast4 log %d%.2d%.2d %.2d%.2d%.2d’, ...
0081 datetime(1),datetime(2),datetime(3), datetime(4),...
0082 datetime(5),datetime(6));
0083 end
0084 fid = fopen(logfile, ’a’);
0085 if (fid == -1)
0086 error(’cannot open file for writing’);
0087 end
0088 end
0089 DATA PKTS RCVD = [];
0090 CTRL PKTS RCVD = [];
0091
0092 MSG ID = 1;
0093 ROUND ID = 0;
0094
0095 MSG LATENCY = [];
0096
0097 signal strength=1;
0098
0099 %%%%%%%%%%%%%% Memory should be initialized here %%%%%%%%%%%%%%%%%
0100 memory=struct( ...
0101 ’currentTS’, -1, ...
0102 ’excited’, FALSE, ...
0103 ’state’, 0, ...
0104 ’backoff rounds’, 0, ...
0105 ’signal strength’, signal strength, ...
0106 ’current time’, -1, ...
0107 ’sender id’, -1, ...
0108 ’data receive timeout’, FALSE,...
0109 ’collision detected’, FALSE,...
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0110 ’data to transmit’, 0,...
0111 ’data to receive’, 0,...
0112 ’rts xmit time’, -1,...
0113 ’data xmit time’, -1);
0114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0115 memory.current time = 0;
0116 N CTRL PKTS XMIT RBCAST = 0;
0117 N DATA PKTS XMIT RBCAST = 0;
0118 N DATA PKTS RCVD RBCAST = 0;
0119 N CTRL PKTS RCVD RBCAST = 0;
0120 N CTRL PKTS COL RBCAST = 0;
0121 N DATA PKTS COL RBCAST = 0;
0122
0123 Start RTSTimeslot In(0);
0124
0125 array excited nodes = sim params(’get app’,’ENA’);
0126 %array excited nodes = [3 24 16 20]
0127
0128 if(isempty(array excited nodes))
0129 error([’Error ! No nodes are excited!!!’]);
0130 end
0131
0132 if(˜isempty(find(array excited nodes == ID)))
0133 memory.excited = TRUE;
0134 end
0135
0136 %if an ’selected’ transmitter
0137 % decide if we have to transmit data in this round
0138 if (memory.excited == TRUE)
0139 memory.data to transmit = MESSAGE LENGTH;
0140 end
0141
0142 sim params(’set’,’MAC MIN WAITING TIME’,0);
0143 sim params(’set’,’MAC RAND WAITING TIME’,0);
0144 sim params(’set’,’MAC MIN BACKOFF TIME’,0);
0145 sim params(’set’,’MAC RAND BACKOFF TIME’,0);
0146 % sim params(’set’,’RECEPTION LIMIT’,0.22);
0147 % sim params(’set’,’RADIO SS VAR CONST’,0);
0148 % sim params(’set’,’RADIO SS VAR RAND’,0);
0149 % sim params(’set’,’TR ERROR PROB’,0);
0150
0151 case ’RTS Timeslot’
0152 PrintMessage(’RTS’)
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0153 sim params(’set’,’MAC PACKET LENGTH’,CTRL PKT SIZE);
0154
0155 if (ID == 1)
0156 ROUND ID = ROUND ID + 1;
0157 end
0158
0159 %Set the current timeslot
0160 memory.currentTS = RTS TS;
0161 % Start the Busy Timeslot at the End
0162 Start NCTSTimeslot In(t + CTRL PKT SIZE + 2);
0163
0164 if (memory.data to receive > 0 && ...
0165 memory.data receive timeout == TRUE)
0166 %Transmitter had backed off during last round and
0167 %no data was received.
0168 %so reset the data to receive. - Basically timeout on receive !
0169 memory.data to receive = 0;
0170 memory.sender id = -1;
0171 end
0172 memory.data receive timeout = FALSE;
0173
0174 %Maintain the backoff counter
0175 %Decrement the counter once each round.
0176 if (memory.backoff rounds > 0)
0177 memory.backoff rounds = memory.backoff rounds - 1;
0178 end
0179
0180 % do we want to transmit data ?
0181 if (memory.data to transmit > 0 && ...
0182 memory.backoff rounds == 0)
0183 % are we in the middle of a reception ?
0184 if (memory.data to receive == 0)
0185 PrintMessage(’S RTS’)
0186 N CTRL PKTS XMIT RBCAST = N CTRL PKTS XMIT RBCAST + 1;
0187
0188 %To calculate the msg latency - log the RTS transmit time
0189 if (memory.rts xmit time == -1)
0190 memory.rts xmit time = t;
0191 end
0192
0193 Send Packet(radiostream(struct(’ID’,ID, ...
0194 ’type’,PKT TYPE RTS,...
0195 ’MSG ID’, MSG ID), ...
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0196 memory.signal strength));
0197 logger(sprintf(’%d: Transmitting RTS - %d’,ID, MSG ID))
0198 MSG ID = MSG ID + 1;
0199 %after transmitting a RTS
0200 % node can be either CANDIDATE or in TRANSMIT states
0201 if (memory.state == IDLE)
0202 memory.state = CANDIDATE;
0203 end
0204 else
0205 % wait for current reception to finish.
0206 end
0207 end
0208
0209
0210 case ’NCTS Timeslot’
0211 PrintMessage(’NCTS’)
0212 sim params(’set’,’MAC PACKET LENGTH’,CTRL PKT SIZE);
0213
0214 %Set the current timeslot
0215 memory.currentTS = NCTS TS;
0216 % Start the Busy Timeslot at the End
0217 Start DataTimeslot In(t + CTRL PKT SIZE + 2)
0218
0219 %if a node has detected a collision
0220 % Transmit a NCTS
0221 if (memory.state == VETO)
0222 PrintMessage(’S NCTS’)
0223 N CTRL PKTS XMIT RBCAST = N CTRL PKTS XMIT RBCAST + 1;
0224 Send Packet(radiostream(struct(’ID’,ID, ’type’,PKT TYPE NCTS,...
0225 ’MSG ID’,MSG ID), memory.signal strength));
0226 logger(sprintf(’%d: Transmitting NCTS - %d’,ID,MSG ID))
0227 MSG ID = MSG ID + 1;
0228 memory.state = IDLE;
0229 end
0230
0231 case ’Data Timeslot’
0232 PrintMessage(’DATA’)
0233 sim params(’set’,’MAC PACKET LENGTH’,DATA PKT SIZE);
0234
0235 memory.currentTS = DATA TS;
0236 Start RTSTimeslot In(t + DATA PKT SIZE + 2)
0237
0238 %if candidate or transmit state
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0239 % transmit data
0240 if (memory.state == CANDIDATE || memory.state == TRANSMIT)
0241 PrintMessage(’S DATA’)
0242 memory.state = TRANSMIT;
0243 memory.data to transmit = memory.data to transmit - 1;
0244 N DATA PKTS XMIT RBCAST = N DATA PKTS XMIT RBCAST + 1;
0245 memory.data xmit time = t;
0246 MSG LATENCY = [ MSG LATENCY ...
0247 (memory.data xmit time - memory.rts xmit time) ];
0248 memory.rts xmit time = -1;
0249 memory.data xmit time = -1;
0250 Send Packet(radiostream(struct(’ID’,ID, ...
0251 ’type’,PKT TYPE DATA,...
0252 ’MSG ID’,MSG ID,...
0253 ’MSG LENGTH’,MESSAGE LENGTH, ...
0254 ’seq no’, (MESSAGE LENGTH-memory.data to transmit), ...
0255 ’data to transmit’,memory.data to transmit), ...
0256 memory.signal strength));
0257 logger(sprintf(’%d: Transmitting DATA - %d’,ID,MSG ID))
0258 MSG ID = MSG ID + 1;
0259 %All parts transmitted
0260 if (memory.data to transmit == 0)
0261 memory.state = IDLE;
0262 end
0263 end
0264 case ’Packet Sent’
0265 if memory.currentTS == RTS TS
0266 memory.last msg sent = PKT TYPE RTS;
0267 elseif memory.currentTS == NCTS TS
0268 memory.last msg sent = PKT TYPE NCTS;
0269 elseif memory.currentTS == DATA TS
0270 memory.last msg sent = PKT TYPE DATA;
0271 else
0272 error([’Bad current timeslot state’])
0273 end
0274
0275 case ’Packet Received’
0276 msg=data.data;
0277 switch msg.type
0278 case PKT TYPE RTS
0279 if (memory.currentTS == RTS TS)
0280 % if we are not transmitting in this round
0281 % we can receive RTS.
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0282 % else
0283 % radio is in transmit mode
0284 % ignore packet
0285 if (memory.state == IDLE && ...
0286 (memory.data to transmit == 0 || ...
0287 memory.backoff rounds > 0))
0288 % check if we have already recvd a RTS this round
0289 if (memory.data receive timeout == FALSE)
0290 memory.sender id = msg.ID;
0291 memory.data receive timeout = TRUE;
0292 logger(sprintf(’%d: Received RTS - %d’,ID,msg.MSG ID))
0293 CTRL PKTS RCVD = [ CTRL PKTS RCVD msg.MSG ID ];
0294 N CTRL PKTS RCVD RBCAST = N CTRL PKTS RCVD RBCAST + 1;
0295 else
0296 % Set flag and send out NCTS in the coming NCTS timeslot
0297 logger(sprintf(’%d: Collision - Received multiple RTS’,ID))
0298 N CTRL PKTS COL RBCAST = N CTRL PKTS COL RBCAST + 1;
0299 memory.collision detected = TRUE;
0300 memory.sender id = -1;
0301 memory.data to receive = 0;
0302 memory.data receive timeout = FALSE;
0303 memory.state = VETO;
0304 end
0305 else
0306 %ignore the RTS if we are attempting to transmit
0307 %ERROR CHECK
0308 if (memory.state ˜= IDLE)% && memory.state ˜= TRANSMIT)
0309 error([’Bad current state’ memory.state ])
0310 end
0311 end
0312 else
0313 error([’Bad current timeslot state - RTS’])
0314 end
0315
0316 case PKT TYPE NCTS
0317 if (memory.currentTS == NCTS TS)
0318 if (memory.state == CANDIDATE)
0319 logger(sprintf(’%d: Received NCTS - %d’,ID,msg.MSG ID))
0320 CTRL PKTS RCVD = [ CTRL PKTS RCVD msg.MSG ID ];
0321 N CTRL PKTS RCVD RBCAST = N CTRL PKTS RCVD RBCAST + 1;
0322 memory.state = IDLE;
0323 memory.backoff rounds = ceil(rand * MAX BACKOFF ROUNDS);
0324 else



APPENDIX A. SIMULATION FILE 68

0325 %if we are in TRANSMIT state - ignore NCTS
0326 %neighbors can receive NCTS packet
0327 %But we do not snoop on NCTS.
0328 end
0329 else
0330 error([’Bad current timeslot state - NCTS’])
0331 end
0332
0333 case PKT TYPE DATA
0334 if memory.currentTS == DATA TS
0335 % If we are supposed to receive date OR idle listen for
0336 % first seq of multi-part DATA
0337 % receive it
0338 % Else
0339 %
0340 if (memory.state == IDLE)
0341 %in case we didnt receive the RTS
0342 if(memory.sender id == -1)
0343 %check if this is the first of a multi-part message
0344 if (msg.seq no == 1)
0345 memory.sender id = msg.ID;
0346 else
0347 %this is the middle of a multi-part message.
0348 %ignore it
0349 end
0350 end
0351 if (memory.sender id ˜= -1)
0352 logger(sprintf(’%d: Received DATA - %d’,ID,msg.MSG ID))
0353 DATA PKTS RCVD = [ DATA PKTS RCVD msg.MSG ID ];
0354 N DATA PKTS RCVD RBCAST = N DATA PKTS RCVD RBCAST + 1;
0355 memory.data to receive = memory.data to receive - 1;
0356 memory.data receive timeout = FALSE;
0357 %Reset the sender id when transmission is complete
0358 if memory.data to receive == 0
0359 memory.sender id = -1;
0360 end
0361 end
0362 elseif (memory.state ˜= TRANSMIT)
0363 logger(sprintf(’%d: Received unknown Data transmission %d.’,...
0364 ID, msg.MSG ID));
0365 else
0366 % node was in transmit state
0367 % radio in transmit mode.
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0368 % ignore data recvd
0369 end
0370 else
0371 error([’Bad current timeslot state - DATA’])
0372 end
0373
0374 otherwise
0375 error([’Bad pkt type: ’ msg.type])
0376 end
0377
0378 case ’Collided Packet Received’
0379 %PrintMessage(’PC’)
0380 msg = data.data;
0381 %disp(sprintf(’%d: Received collided packet’,ID));
0382 switch memory.currentTS
0383 case RTS TS
0384 switch memory.state
0385 case CANDIDATE
0386 % its possible to exist - just transited
0387 % radio in transmit mode - so ignore collision
0388 case IDLE
0389 % if we are not in transmit mode
0390 % => we can detect collisions
0391 if (memory.data to transmit == 0 || memory.backoff rounds > 0)
0392 logger(sprintf(’%d: Collision - RTS’,ID))
0393 N CTRL PKTS COL RBCAST = N CTRL PKTS COL RBCAST + 1;
0394 memory.collision detected = TRUE;
0395 memory.state = VETO;
0396 else
0397 % in transmit mode
0398 end
0399 case TRANSMIT
0400 % its possible to exist - from previous round
0401 % radio in transmit mode - so ignore collision
0402 otherwise
0403 logger(sprintf(’%d: RTS TS: Bad state - %d’,ID, memory.state))
0404 error([’Bad state in RTS TS, ID: ’ ID])
0405 end
0406
0407 case NCTS TS
0408 switch memory.state
0409 case CANDIDATE
0410 % multiple transmitters detected - back off
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0411 logger(sprintf(’%d: Collision - NCTS’,ID))
0412 N CTRL PKTS COL RBCAST = N CTRL PKTS COL RBCAST + 1;
0413 memory.collision detected = TRUE;
0414 memory.backoff rounds = ceil(rand * MAX BACKOFF ROUNDS);
0415 memory.state = IDLE;
0416 case IDLE
0417 % node waiting for DATA.
0418 % we do not snoop in NCTS phase
0419 case TRANSMIT
0420 % its possible to exist - from previous round
0421 % node is the leader - hence ignore collisions
0422 logger(sprintf(’%d: Ignoring Collision - NCTS’,ID))
0423 N CTRL PKTS COL RBCAST = N CTRL PKTS COL RBCAST + 1;
0424 memory.collision detected = TRUE;
0425 case VETO
0426 % radio in transmit mode - so ignore collision
0427 end
0428 case DATA TS
0429 logger(sprintf(’%d: Collision - DATA’,ID))
0430 N DATA PKTS COL RBCAST = N DATA PKTS COL RBCAST + 1;
0431 memory.collision detected = TRUE;
0432 end
0433
0434 case ’GuiInfoRequest’
0435 if ˜isempty(memory)
0436 %disp(sprintf(’Memory Dump of mote ID# %d:\n’,ID)); %disp(memory)
0437 else
0438 %disp(sprintf(’No memory dump available for node %d.\n’,ID));
0439 end
0440
0441 case ’Application Stopped’
0442 % this event is called when simulation is stopped/suspended
0443 sim params(’set app’,’N CTRL PKTS XMIT’,N CTRL PKTS XMIT RBCAST );
0444 sim params(’set app’,’N DATA PKTS XMIT’,N DATA PKTS XMIT RBCAST );
0445 sim params(’set app’,’N CTRL PKT COL’,N CTRL PKTS COL RBCAST);
0446 sim params(’set app’,’N DATA PKT COL’,N DATA PKTS COL RBCAST);
0447 sim params(’set app’,’N CTRL PKTS RCVD’,N CTRL PKTS RCVD RBCAST);
0448 sim params(’set app’,’N DATA PKTS RCVD’,N DATA PKTS RCVD RBCAST);
0449 sim params(’set app’,’N UNIQ CTRL PKTS RCVD’,...
0450 length(unique(CTRL PKTS RCVD)));
0451 sim params(’set app’,’N UNIQ DATA PKTS RCVD’,...
0452 length(unique(DATA PKTS RCVD)));
0453 sim params(’set app’,’MSG LATENCY’,mean(MSG LATENCY));
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0454 fclose(fid);
0455
0456 case ’Application Finished’
0457 % this event is called when simulation is finished
0458 sim params(’set app’,’N CTRL PKTS XMIT’,N CTRL PKTS XMIT RBCAST );
0459 sim params(’set app’,’N DATA PKTS XMIT’,N DATA PKTS XMIT RBCAST );
0460 sim params(’set app’,’N CTRL PKT COL’,N CTRL PKTS COL RBCAST);
0461 sim params(’set app’,’N DATA PKT COL’,N DATA PKTS COL RBCAST);
0462 sim params(’set app’,’N CTRL PKTS RCVD’,N CTRL PKTS RCVD RBCAST);
0463 sim params(’set app’,’N DATA PKTS RCVD’,N DATA PKTS RCVD RBCAST);
0464 sim params(’set app’,’N UNIQ CTRL PKTS RCVD’,...
0465 length(unique(CTRL PKTS RCVD)));
0466 sim params(’set app’,’N UNIQ DATA PKTS RCVD’,...
0467 length(unique(DATA PKTS RCVD)));
0468 sim params(’set app’,’MSG LATENCY’,mean(MSG LATENCY));
0469 fclose(fid);
0470
0471 otherwise
0472 error([’Bad event name for application: ’ event])
0473 end
0474
0475 S; %%%%%%%%%%%%%%%%%%%%%% housekeeping %%%%%%%%%%%%%%%%%%%%%%%%%%%
0476 S; app data{ix}=memory;
0477 S; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0478
0479 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0480 %%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%
0481 %%%%%%%%%%%%%%%%% COMMANDS %%%%%%%%%%%%%%%%%%%
0482 %%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%
0483 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0484
0485 function b=Send Packet(data);
0486 global ID t
0487 radio=prowler(’GetRadioName’);
0488 b=feval(radio, ’Send Packet’, ID, data, t);
0489
0490 function b=Set Clock(alarm time);
0491 global ID
0492 prowler(’InsertEvents2Q’, make event(alarm time, ’Clock Tick’, ID));
0493
0494 function b=Start RTSTimeslot In(alarm time);
0495 global ID
0496 prowler(’InsertEvents2Q’, make event(alarm time, ’RTS Timeslot’, ID));
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0497
0498 function b=Start NCTSTimeslot In(alarm time);
0499 global ID
0500 prowler(’InsertEvents2Q’, make event(alarm time, ’NCTS Timeslot’, ID));
0501
0502 function b=Start DataTimeslot In(alarm time);
0503 global ID
0504 prowler(’InsertEvents2Q’, make event(alarm time, ’Data Timeslot’, ID));
0505
0506 function PrintMessage(msg)
0507 global ID
0508 prowler(’TextMessage’, ID, msg)
0509
0510 function LED(msg)
0511 global ID
0512 prowler(’LED’, ID, msg)
0513
0514 function logger(msg)
0515 global LOG LEVEL LOG SCREEN LOG FILE fid
0516 if (bitand(LOG LEVEL, LOG SCREEN) == LOG SCREEN)
0517 % disp(’logging to screen’);
0518 disp(msg);
0519 end
0520 if (bitand(LOG LEVEL, LOG FILE) == LOG FILE)
0521 % disp(’logging to file’);
0522 fprintf(fid, [ msg ’\n’]);
0523 end
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