HOW STUDENTS MEASURE UP:
AN ASSESSMENT INSTRUMENT FOR INTRODUCTORY
COMPUTER SCIENCE

by
Adrienne Decker

May 1, 2007

A dissertation submitted to the
Faculty of the Graduate School of
The State University of New Y ork at Buffalo
In partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Department of Computer Science and Engineering

Copyright by
Adrienne Decker

2007

Acknowledgments

To borrow from (and modify) Julie Andrews in the Sound of Music, “when a door
closes, awindow opens.” That is exactly what happened one day in December 2003
when | walked into Bill Rapaport’s office looking for anew advisor. | was pleased when
Bill agreed to take me on as achallenge. Soon | discovered that the window | had
jumped through would change everything. My experience working on this dissertation
was very different than the dreary picture of drudgery and turmoil that | had in my mind.
In fact, Bill taught me more about the process of a dissertation, writing, researching, and
expressing my ideas than | ever thought possible. | had often heard rather half-heartedly
that a dissertation was an “apprenticeship,” but | can truly say that my experience has
been just that. | am extremely grateful for all of the help and guidance he has given me.
| can only hope that | can be as good a mentor to someone else one day as he has been to

me.

My committee member Carl Alphonce, has provided me with valuable insight while
on my committee and also as a collaborator on several projects. If not for those other
projects, | might have completed this dissertation sooner. Our collaborations have been
incredibly rewarding and | am most excitedly looking forward to our next steps now that

this task is behind me.

v ACKNOWLEDGMENTS

Therest of my committee, Tom Shuell and Ken Regan, have been invaluable as well.
Tom has provided insight and guidance for many of the education issues that have played
an important part in this endeavor. Tom'’s assistance on the “other side” of my
dissertation has been reassuring and supportive, and | am grateful for his help, even now

in hisretirement. Ken’sinsights and comments have spurned me on my way.

Chris Egert is probably the most inspiring person | have ever met. He has forgotten
more about systems than | will probably ever know. He can inspire his students
effortlessly. He hasinspired meto do great things and to forge ahead and complete this
dissertation throughout al my doubt and uncertainty. While | could not achieve the awe-
inspiring size of his dissertation (in lines of code, nor length, nor the number of
references), | can see hisinfluence in how | approach my work, and my teaching. If | try
hard enough, | know there is much more | can learn from him if he'll let me.
Furthermore, his friendship has meant so much to me over the past seven years, and
while I miss his presence at UB daily, | can take solace in the fact that he is only a phone
call or short car ride away whenever | need anything. I'll continue to use the phone and

car often.

Phil Ventura gave me the inspiration for thiswork. Had he not completed his
dissertation so that | could find a problem with it, | wouldn’t be here today. He also gave
me my start asa TA and then further guidance as | was the instructor for thefirst time. |

learned many things from him about teaching, educational research, statistics, and even

ACKNOWLEDGMENTS

some miscellaneous computer science topics along the way. | am grateful for al our

friendship provided to me during this time.

This dissertation would not have come together without the critique and criticisms
given about the exam that | created. Every person that undertook this challenge provided
valuable insight on the exam and the questions contained within it. Thanksto Kevin
Bierre, Stuart Shapiro, and Bina Ramamurthy. Extra specia thanksto Alan Hunt, who
not only reviewed the exam, but also agreed to allow his students to participate and
provide me with data for analysis. | must also thank from the school of education, Scott
Meier, whose class provided me with important tools for completing this dissertation. |
have received atremendous amount of support from the faculty and staff in our
department. | need to especially mention and thank Peter Scott, Bharat Jayaraman, and

Helene Kershner for their support and guidance.

Itisclichéto say that | oweit all to the support of my family. However, | have been

blessed with abiological family, a matrimonial family, and an adopted family.

My parents have given me so much throughout my life that I owe more than | can
ever repay to them. They blessed me with love and support. They gave me my strength
and my drive, which isthe only way | could have achieved this goal. | was also blessed
to beincredibly close to my Grandma and Grandpa Janusz growing up. When | went off
to college and then on to graduate school, they were always there, smiling proudly.

Grandma left me in the middle of this dissertation, which in some ways only made the

Vi ACKNOWLEDGMENTS

journey that much more important. Now, she has another accomplishment to smile about

even if she can no longer share that smile with me. | know sheis smiling now.

My other parents, the Deckers have been in my life for many years. They have stood
up and cheered as loudly as my own parents at all my accomplishments and have always
been there as additional support whenever | needed it. | can only be grateful that they

have wel comed me as part of their family and that we continue to share a close bond.

| have a brother, Dan, and asister (by marriage) Nicole. They are both younger than
me and at every minute have lived up to the younger sibling image. However, there are
no other peoplethat | know that would be before them in line to lend a hand or be there

for meif | needed it. | thank them for that.

When | became a Decker, | also became aRieth and | can say that | am proud to be
both. Infact, I'm not so sure that the Rieths remember that there was atime when |
wasn't aRieth. I’verelied on Rieth help and friendship in so many ways and | can not
thank the Rieths enough for always being there. There are too many Rieths to name
individually, but | want to speak to afew special Rieths. The Snees have provided a
place to stay for aweek or so for the last several summers aswell asincredible
conversation and support during this process. The Cervis made sure | had the wedding of
my dreams and moral support for life outside of school. My favorite cousin Shannon has
given me lots of laughs and can always say just the right things to let me know that sheis

thinking of me and proud of what I’ve done. | will never be able to repay her for that.

ACKNOWLEDGMENTS vii

Most people are grateful for the set of parents they are born with. | am lucky to also
have a great set of parentsthat | received upon marriage. However, even before that, |
had athird set of parents that “adopted” me and my husband back when we were in high
school. The Maslona's (Carolyn & Gerad) always gave everything of themselves to
their own children and decided along the way that | was someone el se worthy of that
attention. | learned so much from Carolyn about dealing with people, dealing with
students, and dealing within a school that | still have yet to processit all. Sheleft quite a
legacy in her retirement with many of her students. | can only hopethat | can do that as
well. While | know both are extremely proud and happy for me at thistime, | can only
see the expressions of happiness from Carolyn because Jerry was stolen from us all too

soon. | know that he is watching and smiling and I can only smile when | think of him.

I’ ve adopted many undergraduate teaching assi stants throughout this process (Daniel
Britt, Sara (Haydanek) Britt, Mark Zorn, Clark Dever, Mark Jensen, Christopher
Kozlowski, Jim Perrin, Keith Stabins, and Kyle Savage). They have been recruited to
perform excellently in the classroom as well as to complete several other projects aong
theway. | have forged a bond with each one of them and they have forged a bond among
themselves. This bond was so strong that they collaborated to nominate me for the Milton
Plesur award and | didn’'t even know anything about it. | am forever grateful for their

support and look forward to celebrating with them now that this mission is accomplished.

| need to single out two of the UTA crowd for specia mention, Benjamin Robboy and

Michael Kozelsky. Luckily for me, Ben broke his ankle in the Spring 2006 semester and

viii ACKNOWLEDGMENTS

was able to do some data entry, grading, and number crunching for me while he could do
nothing else. Also, many tripsto Dairy Queen last summer helped to make the writing of
this dissertation more bearable if not alittle more costly on the calories. It seemslike
Mike has aways been around asking how my dissertation is going. Sometimes |
appreciated it, and sometimes not, but in any case, | knew he always was trying to be
supportive. Hisinsightsinto students and learning have not only helped mein this
project, but in other projectsaswell. Even though Ben is gone and Mike is leaving me
this semester, their impact on this dissertation and my teaching career has been huge and

will not soon be forgotten.

No one can really say whether we adopted Brandy or she adopted us. In either case,
it doesn’'t matter. Who can resist a constantly smiling face with alarge wet tongue?
Brandy has aways been there to offer her best advice and a helpful paw about the
dissertation. While her advice has been amazingly silent, it has been incredibly

reassuring and comforting.

Lastly, but not in any way the least, | owe a huge amount of thanks for the completion
of this effort to my husband, Eric. He has frequently expressed his support in my
endeavor to finish this dissertation. | couldn’t have done this without that support and |
am forever grateful that he has agreed to be by my side through this and all our other
adventures. Now that this adventure is over, we can begin out next adventure, raising a

family.

For Carolyn Maslona O’ Rourke, who expected good, wanted better, but always got my
best.

Table of Contents

ACKNOWLEDGMENTS.... oottt ettt etee et s s eteeebe s eebeeebesesseesnbessaseeebeseaseeebeseasessbesenseesrenan 11
[RS IO i 7 = I T XVII
(I Y IO T o W 0] T XXI
F N ST L I YN O I XXI111
CHAPTER L INTRODUCTION o cttie ettt ettt e st s s eaae s s s eaaee s s sabe e s sebaesssabaeessasbesesanseesssnrenes 1
1.1 COMPUTING CURRICULAcutttttiieeeieiitteeteeseeesisbeseeesssesasbssseesssesassbssssesssesassbasssssssssassrsseeesesssnnses 1
1.2 PROBLEM STATEMENT ...uutttiitiietieiiitttetesssesissresetesssesisbssssssssesassssssessesssasssssssssesssasssssesssesssesssresees 3
1.3 IMIOTIV ATION L.tettteruterererereseresssesssnsnns 6
14 CONTRIBUTIONS AND SIGNIFICANCE OF THE DISSERTATIONcecoiieiteeeereresteeeereresseeessesesseeessenens 10
15 OUTLINE OF DISSERTATION ..uveeeuvieiuteeeteeeisreessesesseesseeessseessesesssesssesessssessesssssssssesssssssssessssssssesans 11
CHAPTER 2 BACKGROUNDooiitii ettt ettt e etee et e etae et s e saeeebeseesesebesessesenbeseaseesnbesessesssenan 13
2.1 METHODOLOGIES IN THE INTRODUCTORY CURRICULUMcuviiiiiiiieciieeeeeeiieeeeeteeeeeieeeeeearee e 13
211 Coursesthat speak t0 thiS geNEratioN.........cccoviriririirieiree s 14

2.1.2 Approachesto CS1-CS2 using collaborative teChniqQUES...........ccceeveveecieeciece e 16

2.1.3 Approachesrelying on Paradigmcccccceeeiieeiieeiieeseeiee et see s ete e sae e e sne e 18

2.2 PREDICTORS RESEARCH ...tvtiiiiiiiiittttiieeeeeieibareeesesesessbsseeesesssassbatasssesssasssbasssesssessssresssesssessssrenees 18
2.3 EDUCATIONAL OBJECTIVES AND OUTCOMES ASSESSMENT ...cuvvriieieeiieiirnreeeiesssesnsrereeesssesssssenees 23
2.4 ASSESSMENT OF PROGRAMMING SKILL FORCSL.....uutiiiiiiiiiiiiiiriiee e seirreee e eesnereee e e e sannreeees 25
24.1 “The” Sudy (or at least the one everyone recognizes because of itsfailure) 25

242 Critical Eyeto ASSESSMENt PraCliCeS........coueiriieeiirieieiereeeeie st 26

25 STUDY OF PERFORMANCE IN NON-MAJORS COURSEcutiieitiieeeciteee et e e eteeeeeeiteeeeeneea e eveee s 26
2.6 ANALYSISOF PUBLISHED ASSESSMENT INSTRUMENTSciiiiiiiiiciiiiieeeeeeeeinreeeeeeseesennneneeeeeeesanns 27
2.6.1 Advanced Placement EXAM..........oooiuiiiiiiii ettt e st ae e e st e e s era e e sanes 28
2.6.1.1 Reliability Of the AP EXBMc.cuioieiiiieecectieeeeesie ettt ettt bbbt aens 30

26.12 Validity Of the AP EXAM.....ccoiiiiiiiiieieiceee sttt sttt st a et besresbesneneen 31

2.6.2 Graduate Record Exam Subject Test in COmpULer SCIENCE..........ccurvireeeriereeeriiieeseeeeeeseenes 33
2621 Reliability of the GRE Subject Test in COMPULEr SCIENCE........ccorvruerireeerieirieienesreneseeesieeseeeens 35

26.22 Validity of the GRE Subject Test in COMPULEr SCIENCEcevveueririeerieirieienesesesie e 35

26.3 ETSMajor Field Test in COMPULEr SCIENCEc.ceviriiieeirieeeiereeieie et 36
2631 Reliability of the ETS Major Field Test in COMPULEr SCIENCE.........ccvveerieireeeninienerieesieeseeiens 38

26.32 Validity Estimates for the ETS Major Field Test in Computer SCIenCe..........cooevveeerieererienenes 38

2.7 ANALYSISOF AP EXAM DATA ...ttt ettt e et e e e s ae e e e e s s e saaabe e e e e e e s e sansbeeess 38
2711 [T o U1 o o RSO 39

2.8 (600N [o/ I UL o O 41
CHAPTER 3ANALYSISOF THE CC2001 COMPUTER SCIENCE VOLUMEcocceovvieeeiereee 43
31 SUMMARY OF CC2001........coocitieiiei ettt s ettt e e e s s s e s bt e e e e e s s s e ssabbaseeesssssaabbeseeeseessasbareeeseesas 43
311 SITUCIUrE OFf CC2001..... ettt et e e s s e e e e e e s e se e e s s st e e s seaeeessbaeessssbeeesanseeessanens 43
312 CC2001 Sections Important to this DiSSErtationeceerereeerieneerieeee e 44
3.1.3 Chapter 5: Overview of the CS Body of KNOWIEAGE..........cccevrveiririiniiriieeeeeeeseeeeens 44
314 Chapter 7: INtrodUCIONY COUISES......c.couirieeererieietereeeeieseeeeteseese b e s e e s e s s e e s seenes 45

Xii TABLE OF CONTENTS

3141 Programming-first APPrOACHES........cccvveirieiriritese e 46
3142 Advantages and Disadvantages of Programming-First Approaches..........cocoveerrenenrencneeennnns 47
3143 Non-programming-first Approaches
3144 Concepts across All APPIrOBCHES ..ot
3.1.5 Appendix A: CSBody of Knowledge and Appendix B: Course Descriptions............ccc.c...... 55
3.1.6 Therest of CC2001: Chapters1—4, 6, and 8 — 13ccooieieieierene e 56
3.2 ANALY SIS OF THE PROGRAMMING-FIRST APPROACHES TO THE INTRODUCTORY CURRICULUM. 61
321 TwWO- OF Three-SemeESLEr SEQUENCE.cccviieeeeeeieeteeteee e seesteesaeesaeeae e e saeesse e seenseenaesneens
3.2.2 Justification for Programming-FirSt..........cccoeiieiiieiiiie st
3.2.3 Intersection of TOPICSTOr CSLcciieiiiiiciieiesee et nnee s
3231 KNOWIEAGE AT ANGBIYSIScviiieiieireceee et
3232 KNOWIEAGE UNIt ANAIYSIS......oiiiieiieirieisitestees et
3233 Analysis of Knowledge UnitSin INtErSaCtioncooveieirieensenneesec e
3234 Conclusions 80Ut CSL INtEISECHIONeveveeiiirireiierere et
324 Intersection of TOPICSTOr CSL anNd CS2........ccvriiiiriiriiiniereeeee ettt s
3.24.1 KNOWIEAQE ATERANGIYSIS ..ottt sttt et ae st et e st e s e e e e ne et s
3242 Knowledge Unit ANAlYSIS.......ccouevveeiiiiiesieseeeess e
3243 Analysis of Knowledge Unitsin the Intersection
3244 Analysis of Topics from the Knowledge Unit Intersection
3245 Analysis of Hours Covered by Each Approach for each Knowledge Unit ... 85
3246 Problems with Simply “Reading” the Sylabi ..o 87
3.25 ResolUtion Of DISCIrEPANCIES.......cceeiieieeeieeesteestee e eteeesaeseesreesreesseaaesseesseesseesseessesnsessenss 89
3.251 RESONS fOr INCONSISLENCIES.eeuieieitirieie ettt sttt ae sttt e e e e seene e s 89
3.252 All topics should be covered, not al wereindicated............coooviiiiieieinine e 89
3.253 Topics should be covered, none or one were indiCated...........ccoovieiererieieninene e 92
3.254 All approaches should have topics covered, but only two of three doccocceeveeininicnine, 93
3.255 All approaches should have topics covered, but only one of three do ..., 96
3.25.6 Non-uniform topical coverage across aPPrOAChEScccvrrirerieirieenerie e 97
326 Revised Intersection of Knowledge Unit Topical COVErageccoovvrerenerenenenesieneniennene 101
3.27 Comparison of the Current Intersection to CC2001 Chapter 7.......ccccoevereeerennenienenennene 110
3.28 TopicsIncluded in some, but not All Programming-first Approaches............ccccecvvenereennee 118
33 CONGCLUSION ...uteiteeuiesieesteesieesee ettt e s aeesbe e beeabeestesaeesaeesaeeaaeeaseameesaeeeaeabeenbeenbeenbesneesaeesaeenseennas 121
CHAPTER 4 REFINING THE TOPIC LIST ..ottt e
41 INTRODUCTIONutteuteeutesueesteesteesteesseaeesseesaeasseaaseanseamsesasesseesaeesaeesseaseanseaneesseeaseanseensesnsesnsnsnenss
4.2 TOPICSREMOVED......ccctiuiiiteesteetee e s sttt sse s e sae e sse e n e b e eeanesaeesmeesreesneeaneennesnneeneenneenne
421 Topics Eliminated because of Time CONSLraiNtS.........cccccvereereeiesie e
4211 ProgrammMIiNg PrOCESScoveuireerirrererertisesrese st ss s e st see s s se b e st e b e s erese et e r e e s nn e
4212 Concepts underlying the programming process
4213 Exploring different aspects of programming
4.2.2 Topics Eliminated because of Deeper Coverage in Advanced COUrses...........ccovvereeernenes 133
4.2.3 Topics Eliminated because of Difficulty in Determining Material Coverage.................... 134
A.2.4 RECOMIS .. .c ettt ettt e b et h e h et st bbbt bt e Rt e st e ee e b e Rt eh e Rt ae e e e b e b nae e 135
4.3 TOPICSREMAINING ...ctutiiteeteerees s st st st sse e s e sae e sse e st e s e e e earesseesmeesreeaneeanesaneanneeneenneenne 136
4.4 CONCLUSION ...ttt sttt sttt ee e sse e ese e ss e saeesae e s b e sb e e et e e e e e e e ae e ene e R e e s e enrennnenmeesneenreenneennas 136
CHAPTER 5 LEARNING OBJECTIVES. ...t 139
51 MINING CC2001 FOR LEARNING OBJIECTIVES.....ccceeiteeireererreseesseesreessesnsssessneesseessessesnessnens 139
52 LEARNING OBJECTIVES FROM PROGRAMMING FUNDAMENTALS....ccitertirereeesneenreesreeresnesneens 140
521 PF1. Fundamental Programming Constructs Learning Objectives...........cccooevrinenerenen. 140
5.2.2 PF3. Fundamental Data Structures Learning ObjectiVes..........ccoeieinenerenenneseeeeee 142
523 PF4.Recursion Learning ODJECLIVES..........ccoiiiiiiiee e 146

53 LEARNING OBJECTIVES FROM ALGORITHMS AND COMPLEXITY ..cveeitiarieeieeeisieesieesieeieseesneens 147

TABLE OF CONTENTS Xiii

5.3.1 ALl Basic Algorithm Analysis Learning ObJECLIVES..........cccccveierceiie s 147
5.3.2 AL3. Fundamental Computing Algorithms Learning Objectives...........cccocevvevveceeeeennenne. 149
54 LEARNING OBJECTIVES FROM PROGRAMMING LANGUAGES.ccceeiieriieeieeeseesreesreenesne e 153
54.1 PLA4. Declarations and Types Learning ObJECHIVESccoverierereineneeeee e 153
5.4.2 PL5. Abstraction Mechanisms Learning ObJECIVES..........cooiveerercineneeeee e 154
5.4.3 PL6. Object-oriented Programming Learning ObjeCiVES..........cooveererieenenicene e 156
55 L0 ol U= o) TSP 158
CHAPTER 6 CREATION AND CRITIQUE OF EXAM ...ooiiiiieee sttt 163
6.1 INTRODUCTION. ..ttt euteeeuteeeteesuteeeseesabeeaaseesaseeaaseeeabeeaaseesaseeeaseeeabeeaabeesaneeeaseeeaneeeaseeaneeesneesneeans 163
6.2 CREATING QUESTIONS ..ttt itteetetesteessteeesteessbessssessbessssesssbesssessabeesnsessabessnseesabessnseesasessnsessnsens 163
6.3 STRUCTURE OF EXAM QUESTION GROUPSctiititeietesteesiesssseesbeesssessssessnsesssessssessssessnsessasens 168
6.3.1 Basic Syntax QUESLIONS (GrOUP 1)cccueieeieeieerieceeeeesteesteeie e e eesee e sreesaeenaeeae e e sneenes 168
6.3.2 Fundamentals and APl Programming (GrOUP 2)ccceeveereerierieesieeseeseeesseeseeeseesnessseenes 172
6321 FUNCtions and Parameter PASSINGccrverererrererreesreere et n e sr e ne s 172
6.3.2.2 Arithmetic and [0giCal EXPrESSIONS.ccveerreirreiie et 174
6.3.2.3 EXPressions and ASSIONMENToeeireirreisereees e 175

6.3.3 Types, Declaration Models, and Parameter Passing (Group 3)cccoeeeveeveerieeieeseeneeenn 181
6.3.4 Data SIrUCIUrES (GrOUP 4) ..c.veeieeieeiesieieesteesteestestesaeesseesseeteestesseesseesseesaeesseenseensesnsessennes 189
6.3.5 RECUrSION (GrOUP 5) ..eveeieeeesiieiieiesieste s eesteesteeseestesae e et este e e ss e ssaesseesaeenseanseeneesneensennes 199
6.3.6 Searching and Sorting Algorithms, and Algorithm Analysis (Group 6)cccccecveevennenne. 203
6.3.7 Object-Oriented Programming (GrOUP 7)ccceeveecueeieeeesieesieeieseeseesseeseeesseeseesnesnsesseenes 205
6.4 CRITIQUE OF THE EXAM ittt ettt ettt e s e e s ebaae e e s e e e seaba b e e e s e s s s ababeeeeesssenababaeeeeeean 211
6.5 CONCLUSION ...ttt et eueestee bt et e e saeeeaeesaeesaeesae e et eaeeeaeeeae e b e embeambeeabesaeesaeesaeesaeeseemeesneesneanseanes 213
6.6 CODING OF QUESTIONS ON EXAM ...ttt e st 213
CHAPTER 7 EXAM ADMINISTRATION AND GRADING ...cooiiiiieeereeeee e 217
7.1 GENERAL EXAM ADMINISTRATION GUIDELINES.coittatearteaterteeeeseesseesaeeseeesseseesneesseesseenes 217
7.2 GRADING PROCEDURE DEVELOPMENT......utiitteittetteeeeueasseesteestessesssesaesssessaeessesssssnsssnsessesssesnes 220
721 Multiple ChOiCE QUESLIONScueitirieieiterieiente sttt sttt st b e et sb e e b e b e e sne e 221
7211 QUESLIONS With ONlY ONE ANSWESc.oiviiiieiireeiieereesiee e snenen 221
7212 Questions With More than ONE ANSWETcceiuiieeieieiicese et ns 221

7.22 Non-Multiple ChOiCe QUESIIONS........c.eiririeiirtirieierie sttt sr e e sre e 222
7221 Objective Free-Response QUESLIONS — ONE ANSIETc.ccueuirieiirerieririeesieesesesesseseseeesseneseesens 222
7222 Objective Free-Response Questions — COMPIEX ANSWEScooeirreereirieieneseneseeesee e 223
7223 Subjective Free-Response QUESLIONS........c..cireiriiiririeenieeree sttt 223

7.23 Weighting Of QUESLIONS..........ciueiiiirieiieie ettt st sb e et b e et b e e sbe e 224
7231 SPECIAl CBSES ...ttt stttk a e b skt b et b st et et b et b e b et 226

7.2.4 Partial Credit (The Triage Theory of Grading)..........c.ccveeerereienieneieneneese e 228
7.3 STUDY DESIGNeiiiiiutiiueesteeste et etesseesteesaeesaeesae e st e et eaeasseesbeanbeanbesmbesaeesaeesaeesaeeseeneesneesneanseanee 230
7.31 ReSEArCh QUESHIONSouieeieieeeeieie sttt ettt sttt st et e e st saeeneenee e eeeseeseesne e 230
S A U oo £ RS 231
7.3.3 SUAY PrOOCOIccvieeieiiereeiiete ettt ettt sb e st b e et b e e b e 232
7.3.4 ExamGrading for Study PartiCipantsccoeceeereerieneieneseese e 234
7.4 RATING THE RATERS. ...t ettt ettt ettt n e n e snnesmeesneenneenneennas 235
7.4.1 Questions Double Graded to Ensure Rater CONSISLENCYcccecvvrvereereeseenreerie e seenseenns 236
7.4.2 Discussion Of Rating the RALENS.........cccveiee et 238
7.5 RECOMMENDATIONS FOR GRADINGveetieureestesiresieesseesseessesss e sseesseesseenessnessnesseesneesnesssssnnes 240
7.5.1 Two Ratersfor SUDjeCtive QUESLIONS.........c.ceeiiiiicei e 240
752 Grading SMUITANEOUSIYcc.eeiiieiecie et re e e e e nne s 241
7.53 Grading ANONYMOUS TESES........curtirieierrerieiertereeieste sttt se et sbeseese b seesesbeseesesbeseesesbeseenesreseas 242

7.6 (@00 N (o UL o | 243

Xiv TABLE OF CONTENTS

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSIS.....cco e 245
8.1 OVERALL EXAM STATISTICS ..eiitiiiitiesiteesieesibeessee s beessessibessssesssbesssessabesssessssessnsessssessnsessnnens 245
8.2 L= PSSR PRTRR 246

821 TIMETO COMPIELEo ittt bbbt b e 246
8.2.2 Correlation With EXAM SCOME........cccuiiuiiiieieeteee ettt ettt et s s e sre s 248
8.2.3 Analysis of students who took the full three hoursto complete exam..........cc.ccoeeevereeeennee. 249
8231 SEALISHCE RESUITS.....ceevieeeireeiee ettt bbb se b
8.2.32 ANaAlYSIS Of RESUILS......ccviiiicicicecce e
8.2.33 Additional Statistical Results & Analysis
8.2.34 Conclusions about Students who Took Three Hoursto Complete...........covevreienecireenesenens 256
8.3 =TI = PR RPS 256
84 DEMOGRAPHIC INFORMATION ..c.uttietessiteesteesiressssessstessssessssesssessssessssessssessssessssessssessssessssessens 257
S R T oo = O
84.1.1 SEALISHCE RESUITS.......eevieeeieieeier ettt sb et st se b
8.4.1.2 Analysis of Results
S T A o [PP PTPRPPRN
8421 S 1 o= (=S U (USRS
8.4.2.2 Analysis of Results
S T (== T 4TS oo o) S
8431 S 1 o= (=S U (USRS
8.4.32 Anaysis of Results
B4 A IMIBJOF ..ttt bbb h bR bR bbbt b e b e e
8441 SEALISHCA RESUILS......evieee ettt et st e s ae et este et e saeetesreensesaeensesreens
8.4.4.2 Analysis of Results
8.45 HOW COUrSES WEIE TAKEN.....ccoti ettt sttt ettt et et e s s re e sreesreeanas 265
8.45.1 Students Who Took Courses at Other INSHTULIONS.........c.ceiiiuerireieniecrieesseesee e 265
8.4.5.2 Statistical RESUILS........cereieirieereereee e
8.453 Analysis of Results
84.6 REPEALEIS ...ttt e ere s
8.4.6.1 SEALISHCE RESUITS......eeveiceiieieeie ettt se e et ne b
8.4.6.2 Analysis of Results
8.4.7 Previous Programming EXPEriENCE.......ccuccieiieiere e ste s s ettt sreesne e 270
8471 S 1 (o= (=S U (SRR 270
84.7.2 ANAYSIS OFf RESUITS.....oeiieiiececresieesie ettt 272
8.4.8 First Programming LANQUAGEc.cceerierieerieeiesieseesteesteete e e e e e ete e snaesraesneensesnnas 272
8.48.1 S U oz (=S U (OSSR 273
8482 ANAYSIS Of RESUITS.....ceieeiiieeireeieese ettt 273
8.5 GRADES IN CS1 AND CS2 (INCLUDING EXAM SCORE)......ccitiitieersiesieesieesieeiessessseeseeeseeeseeeneas 274
8511 SEALISHCA RESUILS......ecviceie ettt et e s be et esre e e e sbeentesreeneesaeeneesreens 274
8512 ANAYSIS OF RESUITS.....ocuiiiieceireeieese et 278
8.6 GRADES IN CS1 AND CS2 (EXAM SCORE REMOVED)c.cciiuiieiinieinie et 278
8.6.1.1 S S oz (=S U (USRS 279
8.6.1.2 ANAYSIS Of RESUITS ..ottt st be s te b e e e b e e esseneetesaesran 281

CHAPTER 9 DISCUSSION ...ttt ettt ettt et sttt ste et e et e eateeaeesaaesaaesaeesteeasesnsesneesseenseenes 283
9.1 DISCUSSION OF EXAM CREATION PROCESS.......cueiitiiisieeiiteeesieesieesstesssessssessssesessesssessssessnsesans 283
9.2 DISCUSSION OF ANALY SISOF EXAM .ciiiiiiiiiiiiieeeeiie s stee e st e e s stee e sneee e s ssteeesssaeessnneeessnseeens 284

9.2.1 Studentswho chose not to participate in StUAYc.cceveereere e 287
9211 Overall enrollment

9.2.12 Gendercooeeveieeienne
9.2.13 Year in School

9214 Declared Mgjor
9.2.15 Gradein course
9.2.1.6 Conclusions about Participants

TABLE OF CONTENTS XV

9.3 FUTURE WORK ...ttt s s 292
9.3.1 Additional SIUAENT DALAcoveeerirreeerereeenre e s seeee e e ere e 292
9.3.2 Continuation of PrediCtorS RESEAICHcccooveiiiiciie e 293
9.3.3 Testing Of CUrTiCUlAr ChANQES.c..ceitirieiieie ettt ebe e 293
9.3.4 Trendsand Longitudinal RESEAICR...........ciiirieiririe et 294
9.35 Multiple Languages and MUItiple FOIMScccvirieiienieene e 295
9.3.6 Multi-INSttULIONAl ANAIYSISc..cueiieiieiiitereeieeie ettt sne e 296
9.3.7 Updatesfor FULUre CUMTICUIALcoveeiireeiete sttt 297
REFERENGCES. . ..ottt b et b e bt e b b bt e e bt bbb e s bt e e en b e ens 299
APPENDIX A EXAM QUESTIONSoo it sre s neseesesne e 307
APPENDIX B GRADING GUIDELINE FOR EXAMcoiiiiiiiieeee et 349
APPENDIX C REVIEWER QUESTIONNAIREccoitiiiitietnereee e 373
APPENDIX D DEMOGRAPHIC QUESTIONNAIRE ...t 375
APPENDIX E ANALYSISOF RATERS OF EXAM ..ot 381
L@ 0= 1o 1 TSR
L@ =S 1o o 1 TSR

Question 10

Question 11

Question 12

Question 23

Questions 57 and 58
QUESTION 59.....c ettt ettt e et e e be st e et e st e s eaeeseeaesteebe s s et e s eseeaeebeebe s E et et enneaeeteeaeereebennenrenes
Question 101
Question 102
Question 103

XVi

List of Tables

Table 3-1: Figure 7-1 of CC2001 describing the concepts that should be covered in an introductory
curriculum 53

Table 3-2: Figure 7-2 from CC2001 knowledge units and topics that are covered by all six introductory

tracks 54
Table 3-3: Knowledge Area Coverage for Programming-first CS1 courses 64
Table 3-4: Programming Fundamentals Knowledge Unit Coverage for CS1 65
Table 3-5: Algorithms and Complexity Knowledge Unit Coverage in CSL 66
Table 3-6: Programming Languages Knowledge Unit Coverage in CSL 66
Table 3-7: Social and Professional |ssues Knowledge Unit Coveragein CSL 66
Table 3-8: Software Engineering Knowledge Unit Coveragein CSL 67
Table 3-9: Percentages of Knowledge Units Covered by Intersection 68
Table 3-10: Percentages of Total Course Lecture Hours Covered by Intersection 69
Table 3-11: Knowledge Area Coverage for Programming-first CS1 & CS2 70
Table 3-12: Programming Fundamentals Knowledge Unit Coverage for CS1 and C2 71
Table 3-13: Algorithms and Complexity Knowledge Unit Coverage in CS1 and CS2 71
Table 3-14: Programming Languages Knowledge Unit Coverage in CS1 and CS2 72
Table 3-15: Social and Professional 1ssues Knowledge Unit Coverage in CSL and CS2 72
Table 3-16: Software Engineering Knowledge Unit Coverage in CS1 and C2 72
Table 3-17: Percentages of Knowledge Units Covered by Intersection 73
Table 3-18: Percentages of Total Course Lecture Hours Covered by Intersection 74

Table 3-19: PF1. Fundamental Programming Constructs topics covered in programming-first CS1-C2 75

Table 3-20: PF2. Algorithms and Problem-Solving topics covered in programming-firss CS1-C2 76
Table 3-21: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2 76
Table 3-22: PF4. Recursion topics covered in programming-first CS1-CS2 76
Table 3-23:AL1. Basic Algorithmic Analysis topics covered in programming-first CS1-CS2 7
Table 3-24: AL3. Fundamental Computing Algorithms topics covered in programming-first CS1-C2 77
Table 3-25: ALS5. Basic Computability topics covered in programming-first CS1-CS2 77
Table 3-26: PL1. Overview of Programming Languages topics covered in programming-first CS1-CS2 _ 78
Table 3-27: PL2. Virtual Machines topics covered in programming-first CS1-CS2 78
Table 3-28: PL4. Declarations and Types topics covered in programming-first CS1-CS2 78

XVii

Xviii LIST OF TABLES

Table 3-29: PL5. Abstraction Mechanisms topics covered in programming-first CS1-CS2 78
Table 3-30: PL6. Object-oriented Programming topics covered in programming-first CS1-CS2 79
Table 3-31: SP1. History of Computing topics covered in programming-first CS1-CS2 79
Table 3-32: SE1. Software Design topics covered in programming-first CS1-CS2 79
Table 3-33: SE2. Using APIs topics covered in programming-first CS1-CS2 79
Table 3-34: SE3. Software Tools and Environments topics covered in programming-first CS1-CS2_~~ 80
Table 3-35: SE5. Software Requirements and Soecifications Constructs topics covered in programming-

first CS1-C2 80
Table 3-36: SE6. Software Validation topics covered in programming-first CS1-CS2 80
Table 3-37: Topics covered by all three approachesto CS1-C2 8l
Table 3-38: Topics covered by two of three approachesto CS1-CS2 82
Table 3-39: Topics covered by one of three approachesto CS1-CS2 83
Table 3-40: Topics covered by none of the three approachesto CS1-CS? 84
Table 3-41: Hours devoted to each knowledge unit for programming-first CS1-CS2 86

Table 3-42: PF1. Fundamental Programming Constructs topics covered in programming-first CS1-CS2102
Table 3-43. PF2. Algorithms and Problem-Solving topics covered in programming-first CS1-CS2 102

Table 3-44. PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2 102
Table 3-45: PF4. Recursion topics covered in programming-first CS1-CS2 103
Table 3-46:AL1. Basic Algorithmic Analysis topics covered in programming-first CS1-CS2 103
Table 3-47: AL3. Fundamental Computing Algorithms topics covered in programming-first CS1-CS2 _ 103
Table 3-48: AL5. Basic Computability topics covered in programming-first CS1-CS2 104
Table 3-49: PL1. Overview of Programming Languages topics covered in programming-first CS1-CS2 104
Table 3-50: PL2. Virtual Machines topics covered in programming-first CS1-C2 104
Table 3-51: PL4. Declarations and Types topics covered in programming-first CS1-CS2 104
Table 3-52: PL5. Abstraction Mechanisms topics covered in programming-first CS1-CS2 105
Table 3-53: PL6. Object-oriented Programming topics covered in programming-first CS1-CS2 _~ 105
Table 3-54: SP1. History of Computing topics covered in programming-first CS1-CS2 105
Table 3-55: SE1. Software Design topics covered in programming-first CS1-CS2 105
Table 3-56: SE2. Using APIs topics covered in programming-first CS1-CS2 106

Table 3-57: SE3. Software Tools and Environments topics covered in programming-first CS1-CS2_ 106
Table 3-58: SE5. Software Requirements and Soecifications Constructs topics covered in programming-

first CS1-C2 106
Table 3-59: SE6. Software Validation topics covered in programming-first CS1-CS2 106
Table 3-60: Topics covered by all three programming-first approachesto CS1-C2 109

LIST OF TABLES XiX

Table 3-61: Topics covered by all two of three programming-first approachesto CS1-C2 109
Table 3-62: Topics covered by one of the three programming-first approachesto CS1-C2 109
Table 3-63: Topics covered by none of the three programming-first approachesto CS1-CS2 110
Table 3-64: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2 114
Table 3-65:AL1. Basic Algorithmic Analysis topics covered in programming-first CS1-CS2 115
Table 3-66: AL3. Fundamental Computing Algorithms topics covered in programming-first CS1-CS2 _ 116
Table 3-67: SE1. Software Design topics covered in programming-first CS1-CS2 117
Table 3-68: Topics covered only by imperative-first and functional-first CS1 & C 119
Table 3-69: PF3. Fundamental Data Structures topics covered in programming-first CS1-CS2 120
Table 3-70: SE1. Software Design topics covered in programming-first CS1-CS2 120
Table 3-71: Topics covered only by imperative-first CS1 & C2 121
Table 3-72: Topics covered only by functional-first CSL & CS2 121
Table 3-73: Final List of Intersection Topics 124
Table 4-1: Revised List of Topics 137
Table 5-1: Comparison of old and revised learning objectives for PF1. Fundamental Programming

Constructs 142

Table 5-2: Comparison of old and revised learning objectives for PF3. Fundamental Data Sructures _ 145
Table 5-3: Comparison of old and revised learning objectives for PF1. Fundamental Programming

Constructs 147
Table 5-4: Comparison of old and revised learning objectives for AL1. Basic Algorithmic Analysis 148

Table 5-5: Comparison of old and revised learning objectives for AL3. Fundamental Computing

Algorithms 152
Table 5-6: Comparison of old and revised learning objectives for PF1. Fundamental Programming

Constructs 154
Table 5-7: Comparison of old and revised learning objectives for PL5. Abstractions Mechanisms 156

Table 5-8: Comparison of old and revised learning objectives for PL6. Object-oriented Programming _ 158

Table 5-9: Final List of Learning Objectives 161
Table 6-1: Topics from knowledge units included in each group 167
Table 6-2: Categorization of Questions on Exam 216
Table 7-1: Discrepancies by Question 237
Table 7-2: Number of Discrepancies per Exam 238
Table 8-1: Time to Complete Exam 247
Table 8-2: t-test for time to complete exam 251

Table 8-3: Levene's Test for Equality of Means for time to complete exam 251

XX LIST OF TABLES

Table 8-4: t-test (unequal variances) for time to complete 251
Table 8-5: Mann-Whitney test for time to complete 252
Table 8-6: Conversion of Letter Gradesto 4.0 Scale 253
Table 8-7: t-test for CSE 115 overall course grades 254
Table 8-8: t-test for CSE 116 overall course grade 254
Table 8-9: t-test for recalculated CSE 116 overall course grades 255
Table 8-10: t-test for averaged CSE 115 and CSE 116 overall course grades 256
Table 8-11: t-test for Gender 258
Table 8-12: Age Ranges of Participants 260
Table 8-13: t-test for Age 260
Table 8-14: t-test for Year in School 262
Table 8-15: t-test for Major (Computer Science or Computer Engineering vs. Other Majors) 263
Table 8-16: t-test for Major (Computer Science Majors vs. Computer Engineering Majors) 264
Table 8-17: t-test for Taking CS1-CS2 in consecutive semesters 266
Table 8-18: t-test for Taking CS1-CS in traditional academic year 266
Table 8-19: t-test for Repeaters (Students who failed CSL vs. those who did not) 268
Table 8-20: t-test for Repeaters (Students who failed C2 vs. those who did not) 268
Table 8-21.: t-test for Repeaters (Students who failed CS1 and/or CS2 vs. those who did not) 269
Table 8-22: t-test for Prior Programming Experience 271
Table 8-23: t-test for Prior Programming (Prior Java programming) 271
Table 8-24: t-test for Prior Programming (C-derived languages) 272
Table 8-25: t-test for First Language (Java vs. not Java) 273
Table 9-1: Course grade breakdown for all CSE 116 students 290

Table 9-2: Course grade breakdown for CSE 116 students who elected not to particpate in the study 290

List of Figures

Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:

Histogram for Time to Complete Exam 248
Plot of Total Points Earned versus Time Finished 249
Plot of Points Earned on Examvs. CSE 115 Overall Course Grade 275
Plot of Points Earned on Examvs. CSE 116 Overall Course Grade 276
Plot of Points Earned on Examvs. Averaged CSE 115 & CSE 116 Overall Course Grade _ 277
Plot of Points Earned on Exam vs. Revised CSE 116 Overall Course Grade 279
Plot of Points Earned on Examvs. Averaged CSE 115 & CSE 116 Overall Course Grade _ 280

XXI

XXii

Abstract

This dissertation presents an assessment instrument specifically designed for
programming-first introductory sequences in computer science as given in Computing Curricula
2001: Computer Science Volume. The first-year computer science course has been the focus of
many recent innovations and many recent debates in the computer science curriculum. Thereis
significant disagreement as to effective methodology in the first year of computing, and there has
been no shortage of ideas as to what predicts student successin the first year of the computing
curriculum. However, most investigations into predictors of success lack an appropriately
validated assessment instrument to support or refute their findings. Thisis presumably due to the
fact that there are very few validated assessment instruments avail able for assessing student
performance in the first year of computing instruction. The instrument presented here is not
designed to test particular language constructs, but rather the underlying principles of the first
year of computing instruction. It has been administered to students at the end of their first year of
an introductory computer science curriculum. Data needed for analysis of the instrument for
reliability and validity was collected and analyzed. Use of this instrument enables validated
assessment of student progress at the end of their first year, and aso enables the study of further

innovations in the curriculum for the first year computer science courses.

XXiii

XXV

Chapter 1

| ntroduction

Pedagogic innovation at the introductory level of computer science education is not
new. The notion that some curricular idea “works for me” is not good enough for most
people to consider adoption of that particular idea and is not sufficient for scientific
exploration. A reliable and validated instrument is needed for use in scientific
experimentation of new curricular advances to enable researchers to study the impact of
the curricular innovation on student knowledge and skillsin a particular subject area.
The purpose of thiswork is to create a validated assessment instrument that can be used

to measure student achievement at the introductory level of computer science curriculum.

1.1 Computing Curricula

Computers and computing began to emerge as afield of study in the middle of the
last century. Colleges and universities began creating departments and degree programs
in the 1960s. As these departments grew in number, a group of faculty from some of
these colleges and universities was formed under the auspices of the Association for
Computing Machinery (ACM) to explore the various issues facing these institutions

while devel oping these programs in computing. This group produced areport outlining a
1

2 CHAPTER 1 INTRODUCTION

curriculum for the newly emerging discipline of computer science (Committee on
Computer Science Curriculum 1968). Since that time, several revisions have been made
to reflect changing times and trends in the field (Committee on Computer Science
Curriculum 1978; ACM/IEEE-CS Joint Curriculum Task Force Curricula 1991; Joint

Task Force on Computing Curricula 2001).

The most recent of these, commonly known as CC2001 (ACM/IEEE-CS Joint Task
Force on Computing Curricula 2001) is divided into several volumes, each covering a
different sub-discipline of computing. These volumes are: Computer Science, Computer
Engineering, Software Engineering, and Information Systems. This dissertation focuses
on the Computer Science volume, which will be referred to as CC2001 for the remainder
of this dissertation. CC2001 divides the computer science curriculum into fourteen
knowledge areas and subdivides the curriculum into introductory, intermediate, and
advanced course levels. For each level, the report recommends pedagogical approaches
to the topics in each area, including many specific details that were not present in

previous curricula.

Before CC2001, there was much information in the literature about the approach,
assignments, lab environments, and teaching aids that were most appropriate for courses.
These issues are discussed in Chapter 2. Of special interest are the CS1-CS2 introductory
courses, since these are the first courses that students are exposed to. CC2001 recognizes
Six approaches to the introductory sequence: three programming-first approaches

(Imperative-first, Objects-first, and Functional-first) and three non-programming-first

CHAPTER 1 INTRODUCTION 3

approaches (Breadth-first, Algorithms-first, and Hardware-first). The report does not
recommend one over the other, but rather points out their relative strengths and

weaknesses.

1.2 Problem Statement

Whenever anew curricular deviceis conceived, its effectiveness must be
determined: Does the innovation actually help students' understanding of the material ?
Research investigations conducted on new curricular innovations have employed
measures based on lab grade, overall course grade, resignation rate, or exam grades

(Cooper, Dann et al. 2003; Decker 2003; Ventura 2003).

The problem with using these types of metricsin a study is that often they are not
proven reliable or valid. Reliability, or the “degree of consistency among test scores”
(Marshall and Hales 1972, p. 4), and validity, the ability of atest to be “both consistent
and relevant” (Marshall and Hales 1972, p. 104), are both essential whenever the results

of any metric areto be analyzed.

If ametric isreliable, then the results for a particular student for that metric must be
reproducible. Reliability can be assessed using a time-sampling method, a parallel-forms
method, or an internal-consistency method (Ravid 1994; Kaplan and Saccuzzo 2001).
The most common time-sampling method is the test-retest method, where the same
subjects take an exam at two different times and scores are checked for consistency. For

aparallel-forms method, two tests are created that are designed to test the same set of

4 CHAPTER 1 INTRODUCTION

skills. Students then take both forms of the exam, and their results are compared for
consistency. For an internal-consistency method, thetest is split into two halves, and the
two halves are compared for consistency. With an internal consistency method, thetest is

only taken once, which saves time and resources for the researcher.

However, some of the methods have drawbacks. When using a test-retest method,
there can be a practice effect. The practice effect is the possibility that when students
take an exam more than once, they will do better the second time simply because they
have taken the exam before. This effect is not easy to address, so many researchers
choose to measure reliability using some variant of the parallel-forms method or internal -
consistency methods (Marshall and Hales 1972; Ravid 1994; Kaplan and Saccuzzo
2001). However, with parallel forms, there is a burden on the participants and
administrators of the exam. The participants must take a very similar exam twice, and
resources must be devoted to administering these two exams. To minimize practice
effect, this duplicate testing should occur on the same day (Marshall and Hales 1972;

Ravid 1994; Kaplan and Saccuzzo 2001).

Validity can be assessed using the methods of face validity, content-related validity,
or criterion-related validity. Face-validity evidence is gathered from the appearance of
validity. For example, atest screening for suitable mechanicsto fix carsfor adeaership
should have questions about cars and their component parts and would probably not
include questions about the interpretations of famous literary works. This type of validity

does not include an in-depth analysis of the test, but rather a quick read of the questions

CHAPTER 1 INTRODUCTION 5

to assure that the test appears to be applicable to the domain (Marshall and Hales 1972

Ravid 1994; Kaplan and Saccuzzo 2001).

Content-related validity is like face validity in that it isalogical, rather than a
statistical, way of ng validity. With content-related validity, one must determine
whether the construction of the test adequately assesses the knowledge it is supposed to.
Expert judgment is often called on to assess the content-related validity of a measure

(Kaplan and Saccuzzo 2001).

Criterion-related validity is the assessment of how well a particular metric
corresponds with a particular criterion (Kaplan and Saccuzzo 2001). For example, the
Scholastic Aptitude Test (SAT) is used by most colleges and universities as an indicator
of how well a student will perform after high school. In order for oneto usethe SAT in
thisway, the SAT Program Handbook provides results of criterion-validity testing to
show the evidence that it is predictive of college performance (SAT Program Handbook

2006).

The investigations cited in the first paragraph of this section (Cooper, Dann et al.
2003; Decker 2003; Ventura 2003) suffer not only from using assessments which are not
demonstrated valid and reliable, they suffer a further drawback in that they do not specify
how a particular grade is arrived at. For example, when using overall course grade as the
success marker, one should know if there was a curve placed on the grades, or even the

basic breakdown of what is considered “A” work. This problem persists even when

6 CHAPTER 1 INTRODUCTION

using numeric percentage grades, such as 89%. Grading standards must be well

documented to be valuable for assessing the quality of the study.

1.3 Motivation

As with the previous curricula, CC2001 does not provide faculty with instructions
for how to implement its suggestions and guidelines. This leaves faculty to take their
own approaches to the material, and invent assignments, lab exercises, and other teaching
aids for specific courses outlined in the curriculum. When faculty claim innovation in the
CS1 curriculum, we need away of assessing students' comprehension of the core CS1
material. The original goal of this dissertation was to create areliable and validated
assessment instrument that assesses the knowledge of a student who has taken a CS1
class using one of the programming-first approaches described in CC2001. However,
that goal was broadened to create an assessment for the entire introductory sequence
(CS1-CS2). Thischange was necessitated when it was discovered through the work of
this dissertation that the topical coverage of CSL1 as described by CC2001 did not provide
arich enough set of topics for creating an assessment that would serve across all
approaches to the introductory curriculum. A detailed explanation of this processis

described in Chapter 3.

CHAPTER 1 INTRODUCTION 7

An assessment that can be used to measure curricular innovation (i.e., the success of
studentsin a course using a particular approach)’ should be independent of the approach
and the programming language used in the introductory sequence. Essentially, the
assessment should not betied to one particular language of implementation and should
not be concerned with the testing of syntactic minutiae of a particular programming
language. If the assessment is designed with thisideain mind, it can be used to test the
results of curricular changes regardless of the language of choice in the introductory

sequence or the particular approach taken.

The main motivation for thiswork is the fact that no such assessment instrument is
available. Many forms of assessment at the end of the four years of undergraduate
education are available to computer science faculty. Two such examples are the
Educational Testing Service's (ETS) Graduate Record Examinations (GRE) Subject Test
in Computer Science (GRE Subject Test General Description 2004) and ETS' s Major
Field Test in Computer Science (ETS 2003). The GRE Subject Test is designed to assess
astudent’ s ability to succeed in graduate school, while the Major Field Test is designed
as an overal outcomes test for the undergraduate curriculum. In either case, since the
tests are administered at the end of the student’s program for the undergraduate degree,
they are not practical sources of information about the students' knowledge at the end of

their first year of their undergraduate career. Furthermore, careful examination of the

! Several approaches for the introductory sequence are discussed in CC2001. Chapter 3 of this dissertation
provides more details about these different approaches.

8 CHAPTER 1 INTRODUCTION

reliability and validity of these two exams gives us a better indication of their lack of

applicability to this endeavor.

The GRE subject tests across al disciplines have been shown to predict first-year
graduate grade-point average moderatel y well and are more predictive than
undergraduate grade-point averages in half the cases (GRE Score Use 2003). The subject
test scores have also been used in conjunction with GRE test scores and undergraduate
grade-point average to help predict performance. Unfortunately, the data provided by
ETS about the GRE Subject tests does not include information specifically about the

predictive value of the computer science subject exam.

The ETS Mgor Field Test in Computer Science was created with the help of experts
in the subject area. There is no indication, however, that the test corresponds to a
particular curriculum or to the recommendations of CC2001 (Mgjor Field Test 2003).
Thereliability reported for the test for the academic year 2001-2002 was 0.89 (Major
Field Test 2002), which is deemed acceptable. However, the exam tests all of the
following topics: programming fundamentals, software engineering, computer
architecture, computer organization, operating systems, algorithms, theory, computational
mathematics, and certain other specialized topics in computer science (Mgor Field Test
Content 2003). Thistopic list is much larger than what is covered in any CS1, whether
programming-first or non-programming-first. Even though there is a sub-section of the

exam that students who have completed CS1-CS2 could complete, the breadth of the

CHAPTER 1 INTRODUCTION 9

concepts covered on the test would be overwhelming for students who had only

completed one year of study, even in a programming-first approach.

Another test that is available is the Advanced Placement (AP) exam (AP 2003) in
computer science, which students can take while in high school to show their knowledge
of material in a particular subject area before entering college. Thistest has been shown
to be an effective instrument to gauge a student’ s readiness and abilities in the
introductory computing courses. However, this exam has shortcomings that will be
discussed in §2.6. The information about the reliability and validity of the AP exam has
been collected by its creators. Thisinformation only tells us the results for the AP as a
measure of student’ s knowledge of the material tested on the AP exam. It has not been
shown to bereliable or validated for any other purpose, especialy not as an assessment

for introductory computer science at the college level using the CC2001 guidelines.

These assessment measures, which are taken before starting CS1 or after the end of
four years of study, do not help us evaluate student’ s understanding of the core CS1-CS2
material immediately after completion of the CS1-CS2 sequence, nor do they provide a
good source of comparison of curricular innovations for CS1. In order to promote further
experimentation within the development of this course, avalidated and reliable

assessment instrument needs to be created.

10 CHAPTER 1 INTRODUCTION

1.4 Contributionsand Significance of the Dissertation

The first part of this dissertation establishes the common subject matter among the
three programming-first approaches to teaching CS1-CS2 presented in CC2001. One
finding isthat thereis abasic skill set that students who leave CS1-CS2 should have, no

matter which of the seemingly disparate approaches was used to teach the course.

The second contribution is the assessment instrument. This assessment is a paper-
and-pencil exam that is language and approach independent. It isthefirst validated and
reliable means of assessing a student’ s understanding of the material in the programming-
first CS1-CS2 sequence and should prove useful to individual course instructors. It also
provides a useful benchmark for studies that focus on the relative success of different
approaches to teaching the introductory sequence, CS1-CS2. Thisinstrument will be
available to test if a particular teaching technique or pedagogical advance really improves
students' performance in CS1-CS2. If instructors use the instrument as a means of
assessing their students’ performance in a CS1-CS2 sequence, the results could indicate
poor performance of a particular instructor or teaching technique. A poor result may
cause the institution to reassess their current methodologies or curriculum in the CS1-

CS2 sequence.

Thisinstrument can be useful in further study of the computer science curriculum in
many areas. First, it can provide a means of ng curricular innovation and change

at the introductory level. Instructors can use previous scores as a baseline for comparison

CHAPTER 1 INTRODUCTION 11

of changes that have been made to the first year courses. Second, it can provide better
information for studies that have looked at predictors of successin the first year courses
(see 82.2). Many such studies have been published, but few, if any, report on the
measure of success that has been used. Furthermore, the metrics that have been identified
have not been validated before their use. This assessment provides a validated instrument

to measure success in the introductory sequence.

1.5 Outlineof Dissertation

Therest of this dissertation is organized as follows. Chapter 2 is an investigation of
research on methodologies for the introductory curriculum, predicting successin the

introductory curriculum, and ng students within the curriculum.

Chapter 3 gives adetailed analysis of the CC2001 document and establishes a core
list of topics that are common to al programming-first introductory sequences described

in CC2001.

Chapter 4 shows how the list created in Chapter 3 was refined to a more manageable

list of topics that could be used to to create the exam.

Chapter 5 discusses the learning objectives as they are given in CC2001 and which of

those | earning objectives map onto the topics chosen for inclusion in this exam.

Chapter 6 discusses the creation and format of the exam as well as the results of the

reviews of the instrument by various members of the computer science community.

12 CHAPTER 1 INTRODUCTION

Chapter 7 discusses the administration procedure for the exam as well as the grading
guideline for the exam. It also presents the information about the study conducted to

gather the data needed to analyze the exam for validity and reliability.

Chapter 8 presents the results of the statistical analysis of the exam data collected

during the study described in Chapter 7.

Chapter 2

Background

This chapter provides alook at the research that has been published within the three
major categories that the work of this dissertation spans. methodology in the
introductory curriculum, predictors research, and assessment issues. It aso presents the
results of my preliminary work in studies of object-oriented understanding in a non-
majors CS2 course (82.5) and another study of the correlation between AP exam grades
and student performance in introductory computing courses. It highlights the lack of and
therefore need for appropriately validated assessment instruments in each of these

research areas.

2.1 Methodologiesin theIntroductory Curriculum

Both for years before and during the development of CC2001, there was along
debate regarding the most acceptable way to teach the introductory computer science
curriculum. CC2001 does not advocate a particular approach, but rather provides a
selection of six approaches for the introductory curriculum and encourages institutions to

select which one they feel isbest. However, even after the publication of CC2001, the
13

14 CHAPTER 2 BACKGROUND

debate over methodology still continues. In this section, we look at the pre-CC2001

debate.

Owens et a. (1994), Evans (1996), Fincher (1999) and Marion (1999) each give
opinions about how to present the information to students in an introductory course.
Each of these papers lays out many of the foundational ideas for the advocated six
approaches to the introductory curriculum given in the CC2001 document. It is clear that
the CC2001 committee used these ideas as guidelines for preparing the more detailed
treatment of the approaches to the introductory curriculum that appear within CC2001
itself. The papers argue for introductory methodol ogies that concentrate on programming

aswell as approaches that will be labeled non-programming-first approaches in CC2001.

211 Coursesthat speak to this generation

There is no doubt that the current generation of students has grown up with the
computer, computer games, and the Internet. The question to educators becomes whether
this familiarity impacts the way students see and interact with computers. Many would
argue that the exposure of these students to computers greatly influences what they

believe computers should do for them.

Stein (1996) argues that introductory programming should become more interactive
and more closely mimic the way that users are interacting with the machine. Thisway,
students realize that they are creating and modifying an interactively changing system,

which will parallel more closely with what software development is likein industry.

CHAPTER 2 BACKGROUND 15

Guzdia and Soloway (2002) suggest that one reason we have a problem keeping
students interested in computing is that we have an “outdated view of computing and
students” and that we should be shifting our focus towards media and the use of mediato
drive the direction of courses. Since thefirst publication of these ideas, they have
continued to be devel oped by Guzdial, who has just released atext (Guzdial and Ericson
2006) that integrates multi-mediainto the CS1 course as a way to engage studentsin the

process of programming.

Another approach that utilizes the more advanced graphical capabilities of modern
computers is advocated by Cooper, Dann, and Pausch (2003), who developed a
programming environment called Alice. Alice uses 3D graphics and drag and drop
syntax creation while interacting in an object-oriented world. Dann, Cooper, and Pausch
(2006) is atext based on this that gives support materialsto their environment and their

view of introductory programming.

Other graphical approaches are those of Proulx, Rasala, and Fell (1996), Reges
(2000), and Alphonce and Ventura (2003). These groups argue for an approach to CS1
that utilizes graphics and event-driven programming to motivate students while learning
the concepts presented in CS1. However, Reges (2005, 2006) has recently abandoned
this view of introductory computing in favor of the more traditiona view of
programming instruction (text-based, control-structure oriented) because he believes that
his earlier approach was not working. The evidence he presents for this belief is

anecdotal, as his belief that since his switch “back,” his students are performing better

16 CHAPTER 2 BACKGROUND

than before. Reges s switch due to personal belief rather than evidence of performance
points once again to the need for an instrument that can measure student understanding

and that can be used as a comparison between approaches.

212 Approachesto CS1-CS2 using collabor ative techniques

Approaches that are not strictly focused on programming constructs and syntactical
issues have also been explored. These ideas focus on the act of programming and how to

create more effective programmers using various types of collaborative techniques.

In the Applied Apprenticeship Approach (AAA), Astrachan and Reed (1995) seek to
change the way the introductory courses are taught in three key areas: expectations,
focus, and delivery. They expect students to read and modify programs before actually
writing them from scratch. They change the type of problem that students focus on in the
introductory courses, moving students away from “toy” problems that are too small to
illustrate the power of computing to larger problems that really showcase the power of
the discipline. They change the order of delivery of the topics presented in the course

advocating not introducing atopic before the time in a course when it is needed.

Kolling and Barnes (2004) suggest an enhancement to AAA by more closely
integrating the lab (programming) part of a course with the lecture portion. The problems
are presented and discussed in lecture. There are perhaps partial solutions worked on in
lecture that are continued by students on their own. They also advocate having students

work with code that has been expertly written and modify and expand it.

CHAPTER 2 BACKGROUND 17

In Pair Programming (Nagappan et al. (2003)), two students work together at one
computer to solve aproblem. One student acts as the “driver”, actually typing and using
the mouse, while the other acts as a*“navigator,” providing direction about what needs to
be done. Nagappan et al., showed empirical evidence that pair programming in their CS1
classimproved retention rates for the number of students that remained in the course, and
improved their students' perspective on working in collaborative environments. After
doing pair programming, the students feel that working in a collaborative environment is
more beneficial than they originally thought. The authors further conclude using the data
collected from the grades of students that pair programming isin no way a deterrent to

student performance.

A common theme in each of these ideas is that programming should not be taught as a
necessarily singular activity and that the learning environment can be enhanced from both
the students' and educator’ s perspectives using some sort of collaborative technique.
These ideas shift the focus away from simply memorizing the syntax of alanguage and
then working on problemsin isolation to working with programs along with other people

and using the collaboration to benefit the learning experience for al parties.

These ideas provide an interesting viewpoint about teaching this material. For some
of the approaches, anecdotal evidence is suggestive of their success. Since no validated
assessment instrument was used to measure the effect of any approach on student
performance, the effectiveness remains in question and points to a need for an instrument

to assess their effectiveness in conveying introductory concepts.

18 CHAPTER 2 BACKGROUND
2.1.3 Approachesrelying on paradigm

A programming paradigm isaview of a particular program’s main unit of
computation. For example, when one programsin Lisp, the main unit of computation is
the function, and the paradigm is called functional programming. Another set of
documented approaches relies heavily on language, but more importantly on paradigm,

and on issues that arise when teaching a particular paradigm

Pattis (1993), who was teaching Pascal, was concerned about the appropriate point in
the curriculum to teach subprograms. He argued, in contrast to the prevailing ideas of the

times, that procedures should be taught “first” (i.e. as early as possible in the curriculum).

Moving forward afew years, we see Culwin (1999) arguing how to appropriately
teach object-oriented programming, followed by a strong course outline for an Objects-

first CS1 advocated by Alphonce and Ventura (2002; Ventura 2003).

For these approaches as well as others, while there may be strong anecdotal evidence
to support them, little empirical evidence, aside from Ventura (2003), has been presented

asto the real effect of these methodologies on learning the appropriate material for CS1.

2.2 PredictorsResearch

The need for accurate assessment instruments is again evident when one looks at the
literature on predictors of success for CS1. Numerous studies have focused on predicting

successin thefirst year. Successfor each of these studies has been measured in various

CHAPTER 2 BACKGROUND 19

ways, none of which have been shown to be reliable or validated, nor do any of the
measures of success have an ability to be reproduced exactly, because many of them
involve specific assignments for a course or unpublished exam questions. Still others
simply used overall course gradesin a CS1 course that were computed using various

weightings of course components.

Mazlack (1980) administered the IBM Programmer Aptitude Test (PAT) to study its
predictive ability for studentsin computer science. Little information is available about
the PAT. Intheearly 1980s, it was used by many companies (including IBM) to screen
potential applicants for jobs. However, there does not seem to be any publicly available
information about its validity for this purpose. Mazlack uses the results on the PAT asa
potential predictor for each of quiz grades, programming assignment grades, midterm
exam grade, final exam grade, and overall course grade. Hisresults showed that PAT

was not predictive of achievement in any of these areas.

Evans and Simkin (1989) studied demographic profiles, past high school
achievements, prior programming experience, behavioral habits, cognitive style, and
problem solving abilitiesto try to predict successin introductory curriculum. To measure
success, Evans and Simkin used as individual measurements, homework problem scores
(presumably programming problems), as well as scores on multiple choice exam
guestions, fill-in-the-blank exam questions, and overall exam scores. They concluded
that none of the variables they studied best predicted computer proficiency in their course

and that more work was needed in this area

20 CHAPTER 2 BACKGROUND

Hagan and Markham (2000) studied the impact of prior programming experience on
student success in introductory computing. They used the amount of prior programming
as apossible predictor of assignment scores (programming projects), midterm exams, and
afina examindividually. They found that not only did prior programming experience
help, but the more languages that a student was exposed to before entering CS1, the more

their CS1 performance improved.

Cantwell-Wilson and Schrock (2001) investigated twelve possible predictive factors
in their study of successin their introductory CS1 course. They concluded that “comfort
level” was the best predictor for successin the course, followed by mathematics
background. It isinteresting that comfort level a students' feelings about a course and
their place in the course, came out as the most predictive of performance in this study.
To measure comfort level, the Computer Programmer’ s Self-Efficacy Scale was used,
which isavalidated tool for measuring aspects of self-efficacy including comfort level
(Ramalingham and Wiedenbeck 1998). The measurement of success that was used was
midterm course grade. Cantwell-Wilson and Schrock showed that midterm course grade
was highly correlated with final course grade, so a successful midterm grade also would

indicate a successful final course grade.

For each of the four previous studies mentioned, the measures of success used were
all created specifically for the course. These measures were not consistent across the

studies, nor are they particularly reproducible to those outside of the course because no

CHAPTER 2 BACKGROUND 21

information is publicly available about what exam questions looked like, how they were

graded or exactly what the individual assignments were and how they were graded.

Kurtz (1980) used final course grade as his measurement of successin CS1 and
created and administered atest of formal (abstract) reasoning ability in order to classify
the students and study their performance in an introductory programming course. His
classification scheme (late concrete, early formal, late formal) of abstract reasoning
ability has never been validated, but he did show that students classified into one of his
groups performed well in CS1 (late formal) and should be advised to attend an advanced
section, while those classified in another (late concrete) performed poorly and should be

discouraged from attending an advanced section.

Leeper and Silver (1982) concluded that SAT verbal score, followed by SAT math
score, were the two highest predictors of success in the population of CS1 students they
studied. Success was determined for this group by overal letter grade in the course as
well. Other measures that were studied, but did not reveal a significant predictive factor
were a student’ s exposure to Science, Math, and Foreign language in high school as

measured by the number of units of each type of course taken.

For the final two studies, since overall course grade was used as a measure for
success, the measurement included assignments as well as exams. For Leeper and Silver,
the proportional weightings that were used to compute the overall course grade were not

even reported. As before, even if test grades are used as a factor to compute overall

22 CHAPTER 2 BACKGROUND

course grades, the test questions, or assignment specifications are not available and no

information about reliability or validity is offered about these measures.

Another factor that is unfortunate for reproducing and accurately interpreting these
resultsis the fact that the CS1 course had not been clearly defined. We cannot be sure
that the outcomes that were expected of the students in some of these studies arein line
with the recommendations of CC2001, or even in line with each other. For the studies
that occurred before the publication of CC2001, it must be assumed that the researchers
could not have anticipated CC2001 and therefore the courses will not reflect its

recommendations.

Even recent work done on a course that embraces CC2001’ s recommendations for an
objects-first CS1 uses only measures of overall course grade, exam grades, and lab grades
inits study (Ventura2003). The predictive values of the factors studied are given, asin
the other work cited above, and predictive factors have been found in this study as well
(overal course average, lab (programming) assignment average, exam average and
measures of effort (actually completing the assigned tasks for the course)). However, the
study once again fails to convince that the measures used for students' level of success

have been validated.

CHAPTER 2 BACKGROUND 23

2.3 Educational Objectives and Outcomes Assessment

Weéll-defined educational objectives and outcomes assessment measures for
creating new curriculain CS1 are increasingly common. Parker, Fleming et al. (2001)
give amethodology for integrating assessment into the course so that it provides frequent
feedback to the students (their performance) and the instructors (in seeing student
performance). They also provide a methodology for creating these frequently-
administered assessment instruments. This paper provides a methodology for doing this
type of assessment, but does not give the actual assessments. Since we are looking for an
assessment for introductory courses, not simply a methodol ogy, this work does not solve

the problem presented for this dissertation.

Neebel and Litka (2002) propose adesign of a CS1 course where a student’s grade in
the course is based on how many |earning outcomes the student has achieved. The
outcomes for the course have been created before the course is taught and the students are
informed of what the outcomes are. The assessment mechanism can vary from objective
to objective, but students must achieve a grade of 80% on the assessment for the outcome
to have it count as achieved. The student’s grade is determined by how many outcomes

are achieved.

One set of educational objectives that has been explored in a CS1 courseis that of
Bloom’'s Taxonomy of Educational Objectives (Lister and Leaney 2003). Lister and

Leaney use Bloom’'s Taxonomy as away to structure the criterion used to grade the

24 CHAPTER 2 BACKGROUND

students of the course. Students who receive the minimum passing grade in the course
are expected to have successfully completed criteriathat fall into the lowest two levels of
Bloom’'s Taxonomy. Higher gradesin the course are earned by completing criteria that
are categorized at higher levels of the taxonomy. Missing, however, is a clear description
of exactly what (if any) skills the student should come out of CS1 with. It isunclear
whether students are required to understand such topics as iteration or selection to pass
the course. The authors argue that, with this approach, CS2 must be modified to embrace
Bloom’'s Taxonomy as well. When adapting a CS2 course for using Bloom’s Taxonomy
the outcomes expected from CS2 seem to differ from the traditional set of topics that are
normally associated with CS2 by including several software engineering concepts as
opposed to the typical data structures presented. These software engineering concepts

include analysis, design, and synthesis of larger software systems.

Another approach to course-embedded assessment? is used at Slippery Rock
University (Whitfield 2003). Their curriculum was designed so that each student would
come out of the program having learned a well-defined set of topics and ideas. The
courses at this university are designed to make sure that the appropriate material was
presented to achieve these outcomes. However, the stated outcomes for the curriculum
seem generalized and vague. It isdifficult to see whether or not they coincide with

CC2001 s recommendations for CS1. Their assessment methods were not proven valid

2 Course-embedded assessment is assessment that occurs within the course at semi-regular intervals. For
example, midterm exams, graded homeworks, and quizzes all could be administered throughout the
Ssemester as course-embedded assessment instruments.

CHAPTER 2 BACKGROUND 25

or reliable, nor did they indicate whether students were meeting the designated goal of

success in their CS1 course.

2.4 Assessment of Programming Skill for CS1

24.1 “The” Study (or at least the one everyone r ecognizes because of
itsfailure)

There has been one documented attempt at creation of an assessment for CS1. A
working group from the Conference on Innovation and Technology in Computer Science
Education (ITiCSE) created a programming test that was administered to students at
multiple institutions in multiple countries (McCracken, Almstrum et a. 2001). The
group’ s results indicated that students coming out of CS1 did not have the programming

skills that the test assessed.

Among the positives of this attempt at assessment were that it included problems that
were well thought out and that it made an attempt to define and cover all of the material
that a CS1 student should have mastery of. Another positive was the fact that there were
specific grading rubrics created for the problems, which helped lead to uniform scoring.
The students were not restricted to a particular language or programming environment, so

the students completed the exercises in whatever way was most comfortable to them.

However, the study was flawed. This was recognized even by the members of the
working group. The problems given had an inherent mathematical flavor that would have

disadvantaged students with mathematical anxiety. They also admit in their analysis that

26 CHAPTER 2 BACKGROUND

one of the test questions “was undoubtedly difficult for students who had never studied
stacks or other basic data structures” (McCracken, Almstrum et al. 2001). They also
pointed out flaws in the presentation of the problems and the instructions for
administering the exercises. Therefore, even with all the positives of this study, thereis
still room for improvement to make an assessment instrument that could be more true to

the current flavors of CS1 as described in CC2001.

24.2 Critical Eyeto Assessment Practices

Day and Waldron (2004) suggest that traditional written exams in computer science
courses do not accurately assess students and that laboratory or practical coding exams
are a better way to get atrue assessment picture of student learning. They show that there
isastronger correlation between their |aboratory assessment and alarger software project
that students completein their third year than between the traditional written exam and
the software project. It isnot clear from their publications whether the correlations are
statistically significant, nor do they provide information about the reliability, validity, or
grading of their laboratory assessment. Even though the correlation is stronger with their
lab assessments than the more traditional written exams that they had administered

previoudly, it does not give any information for an educator to use in their own courses.

2.5 Study of Performancein Non-Majors Course

In an earlier project, | analyzed students' retention of object-oriented concepts was

conducted in the CS2 course for non-majors at the University at Buffalo, SUNY (Decker

CHAPTER 2 BACKGROUND 27

2003). One problem that grew out of thisinvestigation was that of how to accurately
assess students' knowledge in thisarea. The solution that was used was one that is
commonly found in the rest of the literature, to simply use exam scores as the benchmark
of success. The experiment was well received by the reviewing committee for the
Consortium for Computing Sciences in Colleges Eastern Conference as well as attendees
at the conference as atrue empirical investigation of student comprehension of basic

object-oriented material in a CS1-CS2 sequence.

However, this study in itself suffers from the same problems as much of the literature
inthisarea. The exams and tests that were administered were not proven to bereliable or
valid. Furthermore, this experiment covered only the students’ knowledge of object-
oriented concepts, not general CS1 knowledge. In this dissertation, we seek avalid,
reliable, and comprehensive assessment of CS1 knowledge that isindependent of

language or paradigm.

2.6 Analysisof Published Assessment | nstruments

Three publicly available instruments will be considered in this section, the Advanced
Placement (AP) Exam for Computer Science, the Educational Testing Services (ETS)
Major Field Test in Computer Science, and the Graduate Record Exam (GRE) Subject
Test in Computer Science. For each exam, the content of the exam, the construction

process, and some information about the grading of the exam will be presented, as well as

28 CHAPTER 2 BACKGROUND

information about the psychometric properties of the instruments, specifically reliability

and validity measures.

Information about the reliability of these tests has been gathered mainly from the test
makers themselves. This could be viewed by some as potentially problematic.
Especidly for test makers like the ETS, which produces the AP, Mgjor Field Test, and
GRE, reliability will have to be high for people to continue to use the tests. However,
since ETS owns all of theraw data, it is difficult for independent analysis to be
performed on the exams and this provides the ability for some to question these tests and
pushes the test makers to provide continued data about the reliability and validity of the

tests upon which so many rely.

2.6.1 Advanced Placement Exam

The Advanced Placement (AP) exam is given at the end of a high school course
of study in atopic that is usually reserved for the college level. The program was
designed to help high school students take college-level courses before graduating from
high school. There are many different topics that one can take an advanced placement
course in. Each high school can offer as many different types of AP courses as they see
fit. Attheend of the course, students take the AP exam. These AP grades are then
passed along to the college or university of their choice, which have traditionally given
some sort of credit for “good” scores on the AP exam. Each college or university setsits

own standards for awarding credit based on AP score.

CHAPTER 2 BACKGROUND 29

There are two AP courses and tests in computer science, the Computer Science A and
the Computer Science AB. The Computer Science A exam covers material generally
presented in CS1, while the AB exam covers material from CS1 and CS2 (AP, 2003).
The AP exams are written by ateam called the Development Committee (AP CS
Development Committee, 2004). The committee for the Computer Science exams
consists of instructors from colleges and universities that teach introductory computer
science. They develop questions, which are then reviewed by content experts and the
chief reader for that exam from ETS, the company that publishes the exam. After

approval, questions can be added to the exam.

The AP exam was devel oped with the recommendations for curriculum of the ACM
and |EEE, which would indicate that it should follow the CC2001 recommendations (AP
2003). However, the exam booklet does not indicate that the exam is based on any

curricular models specifically, so it is not certain whether it follows CC2001.

Both the Computer Science A and AB exam are broken into a multiple choice and
free response section. The multiple choice section has 40 questions, and the free
response has four questions. The multiple choice section is given 75 minutes, and the
free response section is given 105 minutes (AP CS A Test Description, 2004; AP CS AB

Test Description, 2004).

The multiple choice sections are scored by a computer, and the free response
guestions are scored by outside readers using a grading guideline. For each exam, the

development committee gives weighting to the sections of the exam. A final scoreis

30 CHAPTER 2 BACKGROUND

computed and then mapped to a 5-point system, with 5 indicating extremely qualified in

this subject area, and 1 indicating not qualified in the area (AP Exam Grading, 2004).

2.6.1.1 Redliability of the AP Exam

In the AP exam data, it is a shame that the n® is not properly reported. One could
infer from reading the text that accompanies the tables about reliability that the reliability
estimates were made from the entirety of the population that took the AP exam for a
particular year. In this case, the AP exam datais from the 2003 administration of the
exam. The sample population used for this statistical analysis was high school students
who took the AP exam. Even though the explicit nis not reported for these statistics, it
can be assumed that the n consisted of al students who took the AP exam in the year

2003 (AP CS A Reliability 2004; AP CS AB Reliability 2004).

It isinteresting to note that the reliability coefficients are lower for the Computer
Science AB exam (.919) than for the A exam (.955).* It is hard to know why this would
be the case and also not evident whether the reliability is statistically significantly lower.
From a cursory examination of the numbers provided, they seem close enough to not be a
statistically significant difference. In either case, the reliability coefficients are

considered adequate for an instrument.

% In statistical reporting, n is the total number of data points used in any statistical analysis.

* The numbers given in reliability estimates are the results of the statistical test known as Cronbach’s alpha.
Thisisameasure of internal consistency reliability. The results of Cronbach’s alpha range from 0 to 1 with
1 being 100% reliable, with a number above .7 considered minimally acceptable for consistency.

CHAPTER 2 BACKGROUND 31

2.6.1.2 Validity of the AP Exam

For the AP exam, two types of validity information are given. Thefirstisa
comparison between AP students and non-AP students on an aternate exam devel oped
by the AP exam creators. The alternate exam that was created contained 12 multiple
choice questions and one free response question from the 1999 Computer Science A or
AB exam. Equal weights were placed on both sections of the exam. Thirteen colleges
and universities participated in the study for the Computer Science A exam, and 12

participated in the Computer Science AB exam (AP Validity, 2004).

The results that are reported for this study are the average scores on these sample
questions for the students. For the AP CS A exam, AP students had an average score of
47, while non-AP students had an average score of 40. For the AP CS AB exam, AP
students had an average score of 55, while non-AP students had an average score of 47.
The fact that the average score for the AP students is higher is reported as being
significant. However, thereisno indication if thereis astatistically significant difference
between the scores of the two groups, because information was not reported about which
statistical test was used or the computed values of those tests.

| have reservations about using the results from this study as any form of evidence of
validity for thistest. First of all, saying one number is higher than another does not show
statistically that the results of one group are any different than the other. Secondly, since
the students were using actual questions from the AP exam, students who took the AP

courses could have the unfair advantage of having seen those questions before while

32 CHAPTER 2 BACKGROUND

taking the AP course and practicing for the exam. There could be a practice effect
influencing their scores. Lastly, this study was conducted on students who are already in
college. The study does not indicate when the exam was administered to the students. It
could be the case that students in college would approach an exam of this type differently
than the typical high school students that would normally take the AP exam. However,

thisevidence is presented as proof of validity for the AP exam.

The second reporting of validity information shows the overall performance of AP
students versus non-AP students in higher level courses overall. The GPAs of the
students were compared to show that in most cases the average GPA of an AP student
was higher than the average GPA of those who did not take AP but who took lower-level
college coursesin that particular discipline. The report cited here worked with 21
colleges and universities and covered al of the AP exams that were given at the time of
the study (Morgan and Ramist, 1998). The use of overall GPA as an outcome measure to
show the validity of the AP exam is questionable at best. The validity of the AP exam for
assessing student proficiency in a particular topic area would have nothing to do with a

student’s overall GPA after taking the exam.

Once again, it is not clear whether the differences in student performance are
statistically significant. The reporting only points out the difference between the two
groups of scores, not the results of statistical tests (such as at-test) looking for differences
in the two groups. Furthermore, | am not sureif this evidence provides support for the

validity of an AP exam to assess the content of a particular discipline. It can be argued

CHAPTER 2 BACKGROUND 33

that students choosing to pursue college-level work in high school are probably more
motivated to succeed than those who do not, and this motivation could contribute more to
their overall successin college than the AP program itself. No precautions were
reportedly taken when analyzing the data reported in this study. With the lack of real
statistical evidence, | once again call into question the usefulness of these resultsin

assessing validity.

2.6.2 Graduate Record Exam Subject Test in Computer Science

For most students entering a graduate program, a GRE general test isrequired in
order to show their suitability for graduate work. The GRE subject tests provide
information about a student’ s overall abilitiesin a particular subject area (GRE Subject
Test General Description, 2004). In the case of computer science, the test contains
guestions in the areas of software systems and methodol ogies, computer organization and
architecture, and theory and mathematical background. It isdesigned to be given at the
end of an undergraduate program to be used as atool by graduate departments to assess a
candidate’ s suitability for graduate work in Computer Science (GRE Subject Test

Computer Science Description, 2004).

Thetest contains 70 multiple choice questions, which are scored on a scal e from 20-
99. The raw scores are computed by adding up the number of correct scores and
subtracting ¥ of apoint for each incorrect answer given. When scores are reported, they

are scaled by adding a zero to the points earned, so scores could range from 200-990 on

34 CHAPTER 2 BACKGROUND

any particular subject test. This scaling is not reported as a normalizing procedure in the
published GRE descriptions, athough it is reasonable to assume that it could be a
normalizing of the scores. Students are given two hours and fifty minutes to complete the

test (GRE Subject Test Computer Science Description, 2004).

Thetest creation process involves professors at both the graduate and undergraduate
levels at colleges and universities in the United States and Canada. The members of this
committee write and review test questions that are assembled by ETS into atest.
Members of the ETS testing service then also review the test for content and any
potential bias. New versions of the tests are analyzed to make sure they are equivalent in
content and difficulty to the older versions. Revisions to content and scope of the test are
undertaken regularly to assure that test content isin line with current trendsin
undergraduate programs across the country (GRE Subject Test Computer Science

Description, 2004).

Although thistest is available for colleges and universities for administration to
students at any time during their academic careers, it covers much more material than the
first year of instruction and would therefore not be a suitable instrument for the purposes

of this dissertation.

CHAPTER 2 BACKGROUND 35
26.21 Rédliability of the GRE Subject Test in Computer Science

There is data available for the reliability of the regular GRE as an instrument, but |
could not find any published data could be found about the subject tests to determine

their reliability.
2.6.2.2 Validity of the GRE Subject Test in Computer Science

The GRE subject tests provide more information about validity of its subject tests,
however. Kuncel, Hezlett and Ones (2001) give information for the regular GRE as well
asthe subject tests. Although no subject test is studied individually, Kuncel, Hezlett and
Ones provides one of the few pieces of information available about the subject tests at all.
There were 1,753 independent samples studied in this work to yield the predictive
validity of the GRE. The operational validity for the GRE predicting overall graduate
GPA isreported to be p = .41°. The operationa validity for the GRE predicting first year
graduate GPA isreported to be p = .45. The operational validity for the GRE predicting
results on comprehensive exam scores is reported to be p=.51. The operational validity
for the GRE correlating with faculty ratings of student performanceis reported to be

p=.50.

Another aspect of the GRE Subject Test’s validity is the effort made to ensure that
the content of the test is appropriate for the departments that will eventually use the test

results. In 2001-2002, a survey was conducted to assess the appropriateness of the

® In this case, the p that is reported is aresult of the statistical testing that is done, not an indication of
significance. The resultsreported in this study are significant.

36 CHAPTER 2 BACKGROUND

content of the GRE Subject Test in Computer Science. 1,250 computer science
departments were contacted, and there were 256 departments whose input was used to
analyze the content of the test. Based on the feedback from the departments, some
changes were implemented in the content of the test in 2003 (CS Content Rep Study,
2002). Thisevaluation of the material of the test points to a commitment to content

validity of the instrument.

2.6.3 ETSMajor Field Test in Computer Science

Of the three “ standardized” tests described in this paper, the ETS Mgjor Field Test is
probably the least known to the average person. ETSisthe creator of the AP, GRE, and
the Major Field Tests. The Mgjor Field Tests are designed to be given at the end of a
four-year undergraduate curriculum. For the computer science version, students are
expected to have completed an undergraduate curriculum whose major area of study is
computer science. The content of the Mgjor Field Test ranges over all four years of
undergraduate study and therefore includes introductory programming, but the content is
not limited to that. It was modeled after the GRE subject test, but not designed to predict
success in a graduate program in computer science. Rather, it was designed to provide an
assessment of the basic knowledge and understanding of senior undergraduates ready to
graduate from afield of study (ETS Major Field Test Description, 2004). Another key
difference between the GRE Subject Test and the ETS Magjor Field Test is that with the
Major Field Test, schools have the opportunity to add to the test up to 50 questions that

are unique to theinstitution. This provides a mechanism for an institution to assess the

CHAPTER 2 BACKGROUND 37

unique facets of its undergraduate program, while aso using the main body of the test as

amechanism for comparing its program to other programs across the country.

Thistest consists of 60 multiple choice questions in four main areas. programming
fundamentals; software engineering; computer architecture, organization, and operating
systems; and algorithms, theory, and computation mathematics. Thereis also a specia
topics section that contains other senior-level computer science topics. Of these areas,
only the first would contain information that deals with first year introductory

programming topics (ETS Major Field Test Description, 2004).

Faculty from colleges and universities in the discipline of computer science are
consulted for the creation of the test, and the test isrevised every five years. Students are
given two hours to complete the test, and institutions can choose to add additional
questions to the end of the test that are specific to their students. Students receive scores
in the range of 120-200, and students are given their score as well as how they ranked
among their peerstaking thetest. Only correct answers are graded on the ETS Mgor
Field tests. No penalty is given for incorrect or omitted answers (ETS Major Field Test

Description, 2004).

Once again, this test covers much more information than needed for this dissertation
and would not be appropriate to administer to students for the purpose of assessing first-

year topics.

38 CHAPTER 2 BACKGROUND
26.3.1 Reliability of the ETSMajor Field Test in Computer Science

Thereliability estimates for the Mgjor Field test were computed using an internal
consistency method and are estimated at .87 for the 60 items on the test (ETS Reliability

2004).
2.6.3.2 Validity Estimatesfor the ETSMajor Field Test in Computer Science

Unfortunately, ETS does not provide any validity data about its Major Field Tests.
Thisis disappointing and disconcerting. If there are schools that are using this test as part
of afinal-year assessment of their students, some indication of the appropriateness of this
test for that task should be given, or at the very least demanded by those faculty that use

it.
2.7 Analysisof AP Exam Data

An experiment was run to see if the grades students received on the AP exam
correlated with their performance in the introductory courses at the University at Buffalo

(UB). Theresults of the experiment are presented here.

We looked for a correlation between a student’s AP exam score and the final |etter
grade the student received in CSE 115, which isthefirst year, first semester course for
majors offered at UB, the CS1 course. The AP exam is scored on an ordinal scale of 1 to
5, with 5 being the highest grade attainable (AP 2003). Students' letter gradesin CSE

115can be A, A-, B+, B, B-, C+, C, C-, D+, D, or F. Thereisan option for studentsto

CHAPTER 2 BACKGROUND 39

resign courses during the semester; students who resign are given agrade of R. Students
who resigned the course and earned a grade of R were omitted from thisanalysis. The
Spearman rank-order correlation test was used, since we have strictly ordinal datain this

anaysis.

The first group examined consisted of those students who took the AP Computer
Science A exam and later took CSE 115. The analysis produced a significant correlation
between the students’ AP exam score and their overall grade in CSE115, r{(49) = .42, p <

.01.°

In the second analysis, students who took the AP Computer Science AB exam and
then took CSE 115 were examined. This analysis showed that there was not a significant
correlation between the students' AP exam score and their overall gradein CSE 115, rs =

21,n=27,p>.05.7
2.7.1.1 Discussion

The results for the AP Computer Science A exam show a correlation with CS1

grade, indicating, for example, that a high grade on the AP exam will indicate a high

® For statistical reporting purposes, r«(F) = m reports the information about the correlation coefficient. ris
the abbreviation indicating that we are using the Spearman rank-order correlation test. F representsthe
degree of freedom, which is one less than the total number of data pointsin the sample. m isthe actual
correlation coefficient. Positive numbers represent a direct correlation, while negative numbers represent
an inverse correlation. Recall that for any statistical analysis, p values that are less than .05 are considered
statistically significant results at the 95% confidence level. Resultsthat have p valuesless than .01 are
considered statistically significant at the 99% confidence level.

" For the results that are not statistically significant, the correlation coefficient is still reported in the same
manner as above, but instead of reporting the degree of freedom, we simply report the size of the sample
data, represented by the letter n.

40 CHAPTER 2 BACKGROUND

gradein CS1. However, thistype of correlation is not useful, because the AP exam is
administered at the end of an academic year of high school study. It has not been proven
reliable or valid except for use as a predictor for success in CS1 course, or CS1-CS2
sequence, in the case of the AB exam. We are looking for an assessment of CS1

knowledge to be administered after the completion of CS1 in a higher education setting.

Another shortcoming of the AP exam is that the questions on the exam are given
using the language C++ and test student knowledge of the object-oriented paradigm. The
test has recently switched languages to Java, but remains heavily focused on language.
The goal for our assessment is one that is language-independent and paradigm-

independent. The AP exam fails to serve our needs on both of those points.

The results of the AP Computer Science AB exam seem troubling in that they show a
lack of correlation with the CS1 grade. Thisislikely dueto the difference in emphasis of
the AB exam, which focuses on material in both a CS1 curriculum aswell asa CS2
curriculum as opposed to strictly a CS1 curriculum. We must recall that a non-significant
result smply shows usthat it is not possible to say definitively that a good grade on the
AP Computer Science AB exam would lead to a good grade in CS1, or vice versa.
Prediction of poor performanceis also not possible. In some cases, there may be a
correlation, but there is not enough significance in the trend to have a statistically
significant result. It isalso important to note, however, that this exam also has the
shortcomings of the A exam in that the exam questions are specific to C++ and to object-

oriented programming.

CHAPTER 2 BACKGROUND 41

Overadl, the results of the analysis show that one of the AP exams does correlate with
student course gradesin our institution’s version of CS1. However, it isnot aviable
solution for the problem this dissertation seeks to address, due to the shortcomings of the

AP exam discussed previously.

2.8 Conclusion

While there have been many investigations into both approaches to the introductory
curriculum and predictors for success in the introductory courses, little has been done to
address the issues of assessment of these skills for students as they move forward into the
more advanced curriculum. Such assessment is hecessary when looking at curricular
innovation or predictors for success. An assessment instrument for this purpose needs to
have a clearly defined set of objectivesto assess. An assessment instrument for this

purpose also needs to have evidence of reliability and validity.

There are several standardized and validated instruments avail able for assessment.
However, none meet the criteriafor applicability at the end of a CS1-CS2 sequence as
described in the CC2001 document. This type of instrument is most desirable for future

testing of curricular development and new exploration of predictors of success.

In the next chapter, the beginning of the process to create such an instrument will be
discussed beginning with the analysis of the CC2001 document to create alist of topics

from which to build an exam.

42

Chapter 3

Analysis of the CC2001 Computer
Science Volume

This chapter analyzes relevant portions of CC2001, the curriculum document that
serves as a basis for constructing my assessment instrument. Since | am most interested
in the introductory curriculum for computer science, the sections of CC2001 that contain
information important for that part of the curriculum will be explained in detail. Other
sections of the CC2001 Computer Science volume that are related to other topics will be

explained briefly for completeness and reference.

The remainder of the chapter discusses which topics will be considered for inclusion
as potential topics for the assessment instrument. The process by which the topics were

salected will be discussed.

3.1 Summary of CC2001

311 Structure of CC2001

CC2001 was produced by the members of the Joint Task Force on Computing

Curricula 2001, created with the support of both the ACM and the IEEE Computer
43

44 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Society. Three drafts of CC2001 were released in March 2000, February 2001, and
August 2001. The final document was released on December 15, 2001. The main body
of CC2001 is divided into thirteen chapters, two appendices, an acknowledgments

section, and a bibliography.

3.1.2 CC2001 Sections Important to this Dissertation

Since this chapter of the dissertation serves as areference to the entire CC2001
document, it isimportant to point out that the sections of CC2001 of greatest importance
to this dissertation are Chapter 5, Chapter 7, Appendix A, and Appendix B, especially the

subsections Syllabus and Units Covered.

3.13 Chapter 5: Overview of the CS Body of Knowledge

Chapter 5 of CC2001 begins by listing the fourteen knowledge areas making up the
core computing science body of knowledge, which correspond to the knowledge focus

groups discussed in Chapter 1 of CC2001 (see §3.1.6):

» Discrete Structures (DS)

* Programming Fundamentals (PF)

» Algorithms and Complexity (AL)

» Architecture and Organization (AR)
* Operating Systems (OS)

* Net-Centric Computing (NC)

* Programming Languages (PL)

* Human-Computer Interaction (HC)
» Graphicsand Visua Computing (GV)
* Intelligent Systems (1S)

* Information Management (IM)

» Socia and Professional Issues (SP)

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 45

» Software Engineering (SE)
» Computational Science and Numerical Methods (CN)

Each knowledge areais further broken down into knowledge units, which represent
smaller topics within the more general knowledge area. The knowledge units are further
broken down into specific topics. The details of this breakdown are given in the

Appendices to CC2001 discussed further in 83.1.5 of this dissertation.

One of the task force' s principle goals for CC2001 was to identify the fundamental
core of the discipline that everyone earning a degree in computer science should have
knowledge of. The designation of this core material is given at the knowledge-unit level.
Thereport is careful to point out that simply teaching the core material does not suffice as
afull curriculum and must be supplemented by other knowledge units that are identified

as elective, aswell as other material deemed appropriate by a particular institution.

The report aso gives recommendations for the number of hours needed to cover a
particular unit. These recommended hours correspond to lecture hours or actual
classroom contact time, and are to be supplemented with outside classroom exercises

where appropriate; they only represent a minimum recommendation for coverage.

3.1.4 Chapter 7: Introductory Courses

Chapter 7 of CC2001 discusses the proposed approaches to the introductory
curriculum. CC2001 is careful not to make any recommendations about which approach

isthe best for the introductory curriculum, but rather to point out relative strengths and

46 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

weaknesses in each of the approaches. In thisway, institutions can decide which

approach will work best.

Severa questions are raised and answered by this chapter, including:

Exactly where does programming fit into the introductory curriculum?
* How long should the introductory sequence be?

* How should we integrate discrete mathematics into the introductory
curriculum?

* What should be our expectations of the introductory curriculum?
In an effort to address these questions, the report gives six models for the introductory
curriculum: imperative-first, objects-first, functional-first, breadth-first, algorithms-first,

and hardware-first.

3.1.4.1 Programming-first Approaches

The imperative-first, objects-first, and functional-first approaches are characterized as
programming-first approaches to the introductory sequence. At the end of the
introductory sequence using any of these three models, students are expected to be fairly
proficient in programming, and the focus of their entire introductory sequence has been
programming. The difference between the three programming-first approaches is what
type of introductory material is presented earliest and what type of programming

language is used for the introductory sequence.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 47

Imperative-first is arguably the most traditional of the six introductory models
presented. A version of this model wasfirst proposed in Curriculum * 78 (Committee on
Computer Science Curriculum 1978). In this model, the focus at the beginning of the
introductory sequence is placed on the “imperative aspects of alanguage: expressions,
control structures, procedures and functions, and other central elements of the traditional
procedural model” (Joint Task Force on Computing Curricula 2001: 29). The language
used for this type of introductory sequence is not specified, but it should be one that
enables students to explore these imperative aspects of alanguage before other language
features. Some examples of thistype of language could be Pascal, C, or the part of C++

that does not use classes.

For objects-first, the principles of object-oriented programming and design are
emphasized from the beginning, with objects and inheritance introduced before the more
traditional control structures (if-statements and loops). An object-oriented language is

most appropriate in this model, with common choices being C++ and Java.

In functional-first, afunctional language (such as Scheme or Lisp) isused. Thistype
of course focuses on using functions as the primary unit of computation. Recursion and

the use of lists as data structures are introduced early when using this approach.

3142 Advantages and Disadvantages of Programming-First Approaches

The programming-first approaches to the introductory curriculum have benefits to the

students. Since programming is such an essential skill for a computer scientist,

48 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

emphasizing it as early as possible gives students plenty of exposure and experience. A
programming-first approach is aso an artifact of history: Many institutions adopted
programming courses before having an entire computer science curriculum, and the
earlier curriculum reports (Curriculum’ 68 (Committee on Computer Science Curriculum
1968) and ' 78 (Committee on Computer Science Curriculum 1978)) endorsed this type of

introductory course.

However, CC2001’' s Chapter 7 also notes that there are several shortcomings to using
aprogramming-first approach. Limiting the focus to programming in the first year gives
arather limited view of the discipline of computer science and tends to focus on the
syntax and use of a particular programming language. This focus on syntax comes at the
price of the development of algorithmic skills. In order to make programming accessible
to students at abasic level, many courses oversimplify the programming process and do

not place enough emphasis on design, analysis, and testing of programs.

Another possible criticism of the current categorization of programming-first
approachesisthat it may not seem entirely clear where every programming language fits.
For example, Prolog is not clearly an imperative, object-oriented, or functional language.
Most would categorize Prolog as a declarative or alogic-programming language.

Therefore, Prolog does not fit nicely into these categorizations.

When dealing with programming languages, one must aso be cognizant of the
constant evolution of programming languages and the changes in the attitude of the

computing community toward one language or another at a particular time. Hayes (2006)

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 49

paints an interesting picture of thisin his article about how programming languages have
changed over time. Even though Hayes lumps the discussion of all the languagesin his
discussion into the three main categories CC2001 covers (as well as Prolog in the logic
category), he misses an opportunity to discuss the possibility of new paradigms being
created. Hayes aso does not adequately address the fact that some languages could be

classified into many different categories.

Thisidea of alanguage crossing multiple paradigms impacts the CC2001
categorization of a school’s curriculum aswell. Many languages could be taught in
different ways to illustrate different paradigms. A popular example of thisis C++. One
could teach C++ as a strictly imperative language or a strictly object-oriented language.
A third aternative would be to teach C++ as alittle of both. LISP is another language
that could be taught in different ways. Although fundamentally functional, there are
object-oriented extensions to LISP as well asimperative constructs availablein LISP that

would enable someone to teach the language using many paradigms.

However, one must remember that CC2001 only provides recommendations and
details only some of the possible approaches to the curriculum. There are certainly other
approaches that are valid, but the focus of CC2001 seems to be on the most popul ar

approaches in use at institutions today.

50 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

3143 Non-programming-first Approaches

An dternative to the programming-first approaches are the non-programming-first
approaches: Breadth-first, Algorithms-first, and Hardware-first. Each of these
approaches has a dightly different emphasisin the first few courses of the curriculum.
Programming is certainly a part of each of these approaches, but it isnot as central asitis

in the programming-first approaches.

Breadth-first approaches focus on the breadth of the field of computer science,
exposing students early to the many interesting facets of the field, and then introducing
programming only after the first semester. This approach seeks to better integrate both
programming and discrete mathematics into the introductory sequence. With this
approach, students have a greater appreciation for the diversity of the field of computer
science and are better prepared to decide if computer science isthefield for them. The
downsideis that the breadth courseis an additional course required at the beginning of

the curriculum.

Algorithms-first approaches introduce the ideas of the introductory sequence using a
non-executabl e pseudo-code rather than an actual programming language and
environment. Students are expected to write and analyze al gorithms that perform certain
operations, but they will not run them on a machine to verify their results. Students move
on to using an actual programming language in the second semester of study under this
approach. The reported benefit of this approach is that students are not caught up with

syntactic detail right from the beginning of the curriculum; rather, they build up

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 5l

algorithmic thinking and problem-solving skills. However, even with a pseudo-code,
thereis syntax that one must learn, albeit probably simpler than that of some of the
modern programming languages. A disadvantage to this approach is that students do not
get to see exactly what the computer can do for them, because they are focusing for the
first semester on hand-tracing code and writing out programs never to be run on a

computer.

Hardware-first approaches begin with students learning about computation at the
machine level, using circuits, and eventually working up to registers and a working von
Neumann machine. After an introduction to computing at the machine level, the second
course in this sequence considers programming in a higher-level language. This course
benefits those students that prefer to understand the entire process of computing down to
the machine-level details up front. However, with the increased emphasisin the
computing discipline on software and the detachment of programming from hardware
through the use of more sophisticated virtual machines, this type of course might be

better suited for a computer engineering program.

| have mentioned how the non-programming-first approaches address some of the
shortcomings of the programming-first approaches. Even though these benefits are
recognized in the non-programming-first approaches to the introductory curriculum, it is
still more common to see institutions that follow a programming-first introductory
sequence. Itisfor thisreason that | will be focusing on the programming-first

approaches for the work of this dissertation.

52 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

3.1.4.4 ConceptsacrossAll Approaches

Chapter 7 of CC2001 also summarizes the set of concepts that should be included in
each introductory curriculum. These concepts are given in this chapter in Table 3-1.
Also included in this chapter is Table 3-2 that shows the knowledge units that should be

covered in an introductory curriculum.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

53

Algorithmic Thinking

Concept Description Associated activities

Algorithmic Algorithms as models of computational Read and explain algorithms; reason about

computation processes; examples of important algorithms | agorithmic correctness; use, apply, and adapt
standard algorithms; write algorithms

Algorithmic Simple analysis of algorithmic complexity; Estimate time and space usage; conduct

efficiency and evaluation of tradeoff considerations; laboratory experiments to evaluate

resource usage techniques for estimation and measurement agorithmic efficiency

Programming Fundamentals

Concept Description Associated activities
Data models Standard structures for representing data; Read and explain values of program objects;
abstract (described by amodel) and concrete | create, implement, use, and modify programs
(described by an implementation) description | that manipulate standard data structures
Control Effects of applying operations to program Read and explain the effects of operations;
structures objects; what an operation does (described by | construct programs to implement a range of
amodel); how an operation doesiit (described | standard algorithms
by an implementation)
Order of Standard control structures: sequence, Make appropriate use of control structuresin
execution selection, iteration; function calls and the design of algorithms and then implement
parameter passing those structures in executable programs
Encapsulation Indivisible bundling of related entities; client | Use existing encapsulated componentsin
view based on abstraction and information- programs; design, implement, and document
hiding; implementer view based on internal encapsulated components
detail
Relationships Therole of interfacesin mediating Explain and make use of inheritance and
among information exchange; responsibilities of interface relationships; incorporate
encapsulated encapsulated components to their clients; the | inheritance and interfaces into the design and
components value of inheritance implementation of programs
Testing and The importance of testing; debugging Design effective tests; identify and correct
Debugging strategies coding and logic errors

Computing environments

Concept Description Associated activities

Layers of Computer systems as a hierarchy of virtual Describe the roles of the various layersin the
abstraction machines virtual machine hierarchy

Programming Role of programming languages, the Outline the program translation process;
languages and translation process, the existence of multiple | identify at least two programming paradigms
paradigms programming paradigms and describe their differences

Basic hardware

Rudiments of machine organization;

Explain basic machine structure; show how

and data machine-level representation of data different kinds of information can be
representation represented using bits
Tools Compilers, editors, debuggers, and other Use tools successfully to develop software

components of programming environments

Table 3-1: Figure 7-1 of CC2001 describing the conceptsthat should be covered in an introductory

curriculum

54 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Unitsfor which all topics must be covered:

DS1. Functions, relations, and sets

DS2. Basic logic

D$4. Basics of counting

DS6. Discrete probability

PF1. Fundamental programming constructs
PF4. Recursion

PL1. Overview of programming languages
PL2. Virtual machines

PL4. Declarations and types

PL5. Abstraction mechanisms

SP1. History of computing

Unitsfor which only a subset of the topics must be covered:

DS3. Proof techniques - The following topics should be covered: The structure of formal proofs; proof
techniques: direct, counterexample, contraposition, contradiction; mathematical induction

PF2. Algorithms and problem-solving — The following topics should be covered: Problem solving
strategies; the role of algorithmsin the problem-solving process; the concept and properties of algorithms;
debugging strategies

PF3. Fundamental data structures— The following topics should be covered: Primitive types; arrays,
records; strings and string processing; data representation in memory; static, stack, and heap allocation;
runtime storage management; pointers and references; linked structures

AL 1. Basic adgorithmic analysis— The following topics should be covered: Big O notation; standard
complexity classes, empirical measurements of performance; time and space tradeoffs in algorithms

AL3. Fundamental computing algorithms — The following topics should be covered: Simple numerical
agorithms; sequential and binary search algorithms; quadratic and O(N log N) sorting algorithms; hashing;
binary search trees

AR1. Digital logic and digital systems— The following topics should be covered: Logic gates; logic
expressions

PL6. Object-oriented programming — The following topics should be covered: Object-oriented design;
encapsulation and information-hiding; separation of behavior and implementation; classes, subclasses, and
inheritance; polymorphism; class hierarchies

SE1. Software design — The following topics should be covered: Fundamental design concepts and
principles; object-oriented analysis and design; design for reuse

SE2. Using APIs— The following topics should be covered: API programming; class browsers and related
tools; programming by example; debugging in the API environment

SE3. Software tools and environments — The following topics should be covered: Programming
environments; testing tools

SES. Software requirements and specifications — The following topics should be covered: Importance of
specification in the software process

SE6. Software validation — The following topics should be covered: Testing fundamentals; test case
generation

Table 3-2: Figure 7-2 from CC2001 knowledge units and topicsthat are covered by all six
introductory tracks

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 55

For each of the approaches presented in Chapter 7 of CC2001, details are given about
their relative strengths and weaknesses. Sample course syllabi are available for al of the

approaches in Appendix B of CC2001.

3.15 Appendix A: CSBody of Knowledge and Appendix B: Course
Descriptions

Appendix A of CC2001 starts out by reiterating the ideas behind the knowledge areas
given previously in the report. Each knowledge areaisthen broken down into its
knowledge units, and each knowledge unit is broken further into topics. For each
knowledge area, a general description is given for what the areais and why it is

considered important to the field.

For each knowledge unit, it isindicated whether they are core knowledge units and
how much time (in hours) is needed to cover the core material. The topics are listed that
make up the knowledge unit. Also given are a set of learning objectives that correspond
with the knowledge unit’ stopics. In this chapter of this dissertation, 83.2, discusses how
this time information and topics were used to create a set of core topics that was used as
the set of core topics for the exam. Chapter 5 of this dissertation discusses the how the
learning objectives given in Appendix A of CC2001 map onto the final set of topics used

to create the exam.

Appendix B of CC2001 gives the sample syllabi for courses described in the

introductory, intermediate, and advanced courses chapters. Each courseisgiven a

56 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

number and title. Within each course description thereis a brief explanation of the
course and its prerequisites. Then the sample syllabus for the courseis given followed by
the knowledge units that are covered and the number of hours that the course should use

to cover those knowledge units.

3.16 Therest of CC2001: Chapters1—4,6,and 813

Chapter 1 of CC2001 describes the mission of the CC2001 committee and explains
that the document isthefirst in aseries of curricular models for computing. The
Computer Science volume serves as amodel curriculum for computer science degree
programs. Three other curricular models have been developed: computer engineering,
information systems, and software engineering. An information technology curriculumis
currently in draft form. Asstated earlier, for the purposes of this dissertation, “ CC2001”

refers only to the computer science volume of the curriculum document.

This chapter also describes the process that was undertaken to revise the curriculum.
Thetask force felt it important and necessary to involve many from the computer science
community to gain perspective and expertise from alarge range of individuals. This
involvement from the larger community was facilitated by the creation of fourteen
knowledge focus-groups, one for each of the knowledge units contained in the final
version of CC2001. These were each charged with the creation of a document that would
help the task force prepare the complete computer science body of knowledge. There

was al so a pedagogy focus group (PFG), whose responsibility was to “consider curricular

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 57

issues across computer science as awhole” (Joint Task Force on Computing Curricula

2001: 3).

Chapter 2 discusses the history of past curriculum efforts and how the task force used
community reaction to the last curriculum (CC1991) to update and create the new

curriculum. The three main reactions were;

» Knowledge units are not as useful as course or curriculum designs.

» Thereisstrong support for a more concrete definition of a minimal core.

» Curriculum reports should pay greater attention to accreditation criteriafor

computer science programs.

Chapter 3 examines how changes in the world and in technology since the | ast
curriculum report impact this curriculum. The chapter points out that such things as the
growth of the World Wide Web and applications associated with it require changes to the
curriculum. Also included is how cultural changes across the world, such as the increase
in the number of homes using computers and having Internet access, have made

computing a much different discipline now than when CC1991 was created.

Chapter 4 of CC2001 discusses the principles that guided the work of the task force.

These principles, reprinted here from pages 12-13 of CC2001 are:

1. Computingisabroad field that extends well beyond the boundaries of
computer science.

2. Computer science draws its foundations from awide variety of disciplines.

58

10.

11.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

The rapid evolution of computer science requires an ongoing review of the
corresponding curriculum.

Development of a computer science curriculum must be sensitive to changes
in technology, new developments in pedagogy, and the importance of lifelong
learning.

CC2001 must go beyond knowledge unitsto offer significant guidancein
terms of individual course design.

CC2001 should seek to identify the fundamental skills and knowledge that all
computing students must possess.

The required body of knowledge must be made as small as possible.
CC2001 must strive to be international in scope.
The development of CC2001 must be broadly based.

CC2001 must include professional practice as an integral component of the
undergraduate curriculum.

CC2001 must include discussions of strategies and tactics for implementation
along with high-level recommendations.

Chapter 6 of CC2001 introduces the implementation strategies for model curricula.

The curriculum is divided into three course levels: introductory, intermediate, and

advanced. For the introductory level, six different implementation strategies are

proposed and discussed later in the report (but earlier in this dissertation; see §3.1.4).

For the intermediate level, four different approaches are proposed: topic-based,

compressed, systems-based, and web-based. The advanced level consists of courses that

are designed to complete the curriculum.

The CC2001 report proposes that a curriculum can be developed using any of the

introductory course models, followed by any of the intermediate course models, and

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 59

finishing with the advanced courses. Chapter 6 of CC2001 ends with two examples of
selecting an introductory and intermediate approach and how those approaches will help

cover the computer science core.

Chapter 8 of CC2001 discusses approaches to the intermediate curriculum and also
gives sample course syllabi (in Appendix B of CC2001) for the different approaches.

These approaches are:

» A traditional approach in which each course addresses a single topic

» A compressed approach that organizes courses around broader themes

* Anintensive systems-based approach

* A web-based approach that uses networking as its organizing principle
Chapter 9 of CC2001 discusses additions to the base curriculum presented in

Chapters 7 and 8 to complete the curriculum. Topics that are discussed to “fill out” a
curriculum are mathematical rigor, the scientific method, familiarity with applications,
communications skills, and working in teams. Several sample courses are presented that
help to “fill out” the topics given above that aso fit into the knowledge areas and cover
some of the elective knowledge units. Another type of course that is discussed and
recommended here is a project course that forces students to complete alarge-scale

computing project, usually working in teams.

Chapter 9 of CC2001 also gives afew complete sample curricula. The first
exampleisfor aresearch university in the United States. The second is adiscipline-

based model, used primarily in countries outside of the United States and Canada, where

60 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

students do not take alarge portion of their coursework at the university-level as general
education requirements, but rather focus amost entirely on their field of study. The third
isamodel for asmall department, one that has less than five or six faculty. Thelastisa
model for two-year colleges, whose students are expected to transfer to a four-year

institution for completion of a bachelor’s degree.

Chapter 10 of CC2001 discusses the integration of professiona practice into the
curriculum. It has become increasingly evident that employers need and want certain
skills out of recent college and university graduates, and it is necessary to try to
incorporate some of these skills into the educational process. Some current models for
incorporating these ideas into the curriculum are presented in Chapter 10, aswell as
discussion of how a department can support professional practice within the curriculum,

and assess Whether its students are incorporating these ideas appropriately in their work.

Chapter 11 of CC2001 discusses the general characteristics that students with a
computer science degree should possess. Thisincludes their capabilities and skills, as
well astheir ability to cope with this ever-changing field. The last element presented in
this chapter is aset of standards for benchmarking a student’ s level of achievement with
the curricular goals. These standards give minimum standards (called threshold
standards) that al graduates should meet as well as more advanced standards (called
modal standards) to encourage achievement beyond the minimum. For example, a
threshold standard is “ Demonstrate a requisite understanding of the main body of

knowledge and theories of computer science”, while amodal standard is“ Demonstrate a

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 61

sound understanding of the main areas of the body of knowledge and the theories of

computer science, with an ability to exercise critical judgment across arange of issues”’.

Chapter 12 of CC2001 seeks to give suggestions for how computing and computing
ideas can be presented to students across all academic disciplines as well as computer

science' s place in the field of academics.

Chapter 13 of CC2001 is a concluding chapter about how this report should be used
by alocal institution and gives suggestions for what types of resources (both machinery

and personnel) are needed to make any implementation a success.

3.2 Analysisof the Programming-First Approachesto the
Introductory Curriculum
This section shows the intersection of topics of the three programming-first
approaches to the introductory curriculum. First examined are the sample syllabi for the
programming-first CS1 courses and then the syllabi for both CS1 and CS2. The CS1
courses have asmall overlap; thereis alarger overlap in topics when both CS1 and CS2
are considered. As aconsequence, our assessment instrument addresses both CS1 and

CS2.

| conclude with a discussion of inconsistencies between the wording of the course

descriptions and the descriptions of the topical coverage contained elsewhere in CC2001.

62 CHAPTER 3 ANALYS'SOF THE CC2001 COMPUTER SCIENCE VOLUME
3.2.1 Two- or Three-Semester Sequence

Appendix B of CC2001 gives course descriptions for both two-semester and three-
semester versions of introductory courses in both the programming-first and non-
programming-first approaches. There are both two- and three-semester models for
imperative-first and objects-first. However, for functional-first, there is only atwo-

semester model. Therefore, my efforts focused only on two-semester course models.

3.2.2 Justification for Programming-First

Of the six approaches to the introductory curriculum endorsed by CC2001 (three
programming-first approaches (imperative-first, objects-first, functional-first) and three
non-programming-first approaches (breadth-first, agorithms-first, and hardware-first)), |
have chosen to look for commonalities among only the programming-first approaches

and create an assessment for these types of courses. There are two main reasons for this.

The first reason is that many institutions use the programming-first model for their
introductory sequence of courses and will continue to do so for the foreseeabl e future.
This model has proven extremely durable and long-lasting as amodel for the introductory

curriculum.

The second reason is the difference in emphasis of the programming-first approaches
from the non-programming-first approaches. The non-programming-first approaches
each emphasize a different aspect of the computing discipline (hardware, algorithms, or

breadth coverage). These three approaches are discussed in depth in CC2001 and

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 63

summarized in 83.1.4.3. Thethreefoci of the non-programming-first approaches do not
overlap with each other and none have a significant programming component. Focusing
only on the programming-first approaches yields a better intersection of topic coverage

and, with the popularity of the programming-first approaches, an assessment that will be

widely applicable at various institutions.

Lastly, the programming-first approach is the approach used at the University at
Buffalo for CS1 and CS2. Since the University at Buffalo is the most readily accessible
population to serve as test subjects for the exam, it makes the most sense to create an

exam that can be administered to those students.

3.2.3 | nter section of Topicsfor CS1

The intersection of topics among the CS1 courses described by CC2001 is small and
does not yield the amount of coverage that should be present in atrue assessment of a

semester’ s worth of work.

Thisis an unfortunate result because an assessment of strictly CS1 could be useful in
anumber of contexts. First, those seeking to ook at changes made to a particular CS1
course could tell if the changes had an impact on student performance. Second, those
interested in predictors of success often focus strictly on CS1. A validated assessment for
the end of a CS1 course provides a metric by which to measure success. However, as
will be discussed in this section, a CS1 assessment is simply not possible with amount of

topic coverage common to all three programming-first approaches.

64 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

3231 Knowledge Area Analysis

Let usfirst look at the knowledge areas covered by each of the three programming-
first CS1 courses. The knowledge areas covered by a specific course are givenin
Appendix B’s course descriptions labeled Units covered. These findings are summarized

in Table 3-3. An X in arow indicates that the knowledge areais covered in that course.

Imperative- | Objects- | Functional-

8
Knowledge Area first® CS1 | first CS1 | first CS1

Algorithms and Complexity (AL) X X X
Programming Fundamental s (PF) X X X
Programming Languages (PL) X X X
Social and Professional ssues (SP) X X X
Software Engineering (SE) X X X
Graphics and Visual Computing (GV) X X

Architecture and Organization (AR) X

Discrete Structures (DS) X
Operating Systems (OS) X

Computational Science (CN)
Human-Computer Interaction (HC)
Information Management (IM)
Intelligent Systems (1S)
Net-Centric Computing (NC)

Table 3-3: Knowledge Area Coverage for Programming-first CS1 courses

It isinteresting to note that the knowledge area for Architecture and Organization is

present in the imperative-first approach and no others, while the knowledge areafor

8 Any information contained in this chapter that refers to CC2001 has been taken verbatim from the
document. However, the order has been changed so that topics covered by all three approaches are listed
first, followed by topics covered in only two approaches, etc. All spellings, abbreviations, titles, and
capitalization have been copied from that document.

° Note that for the remainder of the tables in this chapter, Imperative-first, Objects-first, and Functional-first
will be abbreviated as IF, OF, and FF respectively.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 65

Operating Systems is present for functional-first and no others. The reasons come right
from the course descriptions given in Appendix B. The imperative-first approach puts
emphasis on the machine representation of data as part of CS1, as well as discussion of
the von Neumann architecture. The other two approaches do not include such topics.
The functional-first approach includes information about concurrency, because many
functional languages have built-in mechanisms for handling concurrency that can

therefore easily be discussed early.

Table 3-3 shows us that the common knowledge areas in CS1 across all three
approaches are: Programming Fundamentals, Algorithms and Complexity, Programming

Languages, Socia and Professional Issues, and Software Engineering.

3.23.2 Knowledge Unit Analysis

Each knowledge areais divided into more detailed knowledge units. Table 3-4
through Table 3-8 summarize, for each knowledge area, which knowledge units are
covered by the CS1 courses. Once again, thisinformation isin the Units covered section

of each sample syllabusin Appendix B of CC2001.

Knowledge Unit IF CS1 OF CS1 FF CS1
PF1. Fundamental programming constructs X X X
PF2. Algorithms and problem-solving X X X
PF3. Fundamental data structures X X X
PF4. Recursion X X
PF5. Event-driven programming

Table 3-4: Programming Fundamentals K nowledge Unit Coverage for CS1

66 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Knowledge Unit IFCS1 OF Cs1 FF CSl
AL 3. Fundamental computing algorithms X X X
ALS. Basic computability X X X
AL1. Basic algorithmic analysis X
AL2. Algorithmic strategies X

AL 4. Distributed Algorithms

AL6. The complexity classes P and NP
AL7. Automata theory

ALS8. Advanced arithmetic analysis
AL9. Cryptographic algorithms

AL 10. Geometric algorithms

AL11. Parallel algorithms

Table 3-5: Algorithms and Complexity K nowledge Unit Coveragein CS1

Knowledge Unit IFCS1 OF Cs1 FF CSs1
PL4. Declarations and types X X X
PL5. Abstraction mechanisms X X X
PL1. Overview of programming languages X X
PL6. Object-oriented programming X X

PL7. Functional programming X
PL2. Virtual machines

PL 3. Introduction to language translation
PL8. Language trandation systems

PL9. Type systems

PL 10. Programming language semantics
PL11. Programming language design

Table 3-6: Programming L anguages K nowledge Unit Coveragein CS1

Knowledge Unit IFCS1L | OFCS1 | FFCS1
SP1. History of computing X X X
SP5. Risks and liabilities of computer-based systems X

SP2. Socia context of computing

SP3. Methods and tools of analysis

SP4. Professional and ethical responsibilities
SP6. Intellectual property

SP7. Privacy and civil liberties

SP8. Computer crime

SP9. Economic issuesin computing

SP10. Philosophical frameworks

Table 3-7: Social and Professional | ssues Knowledge Unit Coveragein CS1

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 67

Knowledge Unit IF CS1 OF CS1 FF CS1
SE1. Software design X X X
SE3. Software tools and environments X X X
SE2. Using APIs X

SES5. Software requirements and specifications X

SE6. Software validation X

SE4. Software processes

SE7. Software evolution

SE8. Software project management
SE9. Component-based computing
SE10. Formal methods

SE11. Software reliability

SE12. Speciaized systems devel opment

Table 3-8: Software Engineering Knowledge Unit Coveragein CS1

3.23.3 Analysisof Knowledge Unitsin Intersection

Ten knowledge units are covered by all three programming-first approaches:

* PF1. Fundamental programming constructs
» PF2. Algorithms and problem-solving

* PF3. Fundamental data structures

» ALS3. Fundamental computing algorithms

* ALDS. Basic computability

* PL4. Declarations and types

» PL5. Abstraction mechanisms

e SP1. History of computing

» SEI1. Software design

» SE3. Software tools and environments

Each of these knowledge unitsis covered in all three course models. What still needs

to beinvestigated is whether these knowledge units are covered to the same degreein

68 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

each course and whether these topics make up alarge enough portion of the coursesto be

considered an appropriate assessment of the topics covered in those courses.

A first approximation to determining the degree of coverage isto consider the

percentage of the common knowledge units to the total. These results are summarized in

Table 3-9.
IFCS1 [OFCS1 | FFCS1
Total number of Knowledge Units Covered in CS1 17 15 17
Number of Knowledge Units in Intersection 10 10 10
Percentage Covered by Intersection 59% 67% 59%
Percentage Not Covered by Intersection 41% 33% 41%

Table 3-9: Percentages of Knowledge Units Covered by I nter section

We see that there is arange of 59% - 67% of total knowledge-unit coverage for
the three approaches. These figures have been computed using only the actual number of
knowledge units covered, not the time spent on each knowledge unit or the actual sub-
topics from each knowledge unit covered by the courses. Let us consider these

percentages next.

Each course has been designed for forty course-lecture-hours. The breakdown of
hours per knowledge unit is given in the Units covered section of the sample course
syllabi in Appendix B. Recall from the information given in CC2001 that these lecture
hours are given to represent actual in-classtimein alecture-style course. The results of

thisanalysis are summarized in the Table 3-10.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 69
IF CS1 OF C31 FF CS1
Total number of lecture hoursin CS1 40 40 40
Number of lecture hours covered by
knowledge unitsin Intersection 28 24 21
Percentage Covered by Intersection 70% 60% 53%
Percentage Not Covered by Intersection 30% 40% 47%

Table 3-10: Percentages of Total Course Lecture Hours Covered by Intersection

The amount of hours varies more widely than the knowledge units. The intersection
only makes up alittle more than half of the lecture time for functional-first, whileit is

more than two-thirds of the lecture time for imperatives-first.

3.234 Conclusions about CS1 intersection

If we focus only on the intersection in CS1, as much as 41% of the knowledge units
presented in a course can be missing and as much as 47% of the course lecture hours can
be missing from both the intersection of topics and an exam built from that intersection.
Analysis did not proceed down to the topic level for CS1. Given the percentage of
knowledge units missing from the intersection and the fact that the topics are simply
refinements of a knowledge unit, such an analysis would not have yielded any better
results for an intersection. An assessment instrument that tests for only alittle more than
half of the course content does not seem to be an appropriate test of a student’s abilities

with the course material.

70 CHAPTER 3 ANALYS'SOF THE CC2001 COMPUTER SCIENCE VOLUME
3.24 I nter section of Topicsfor CS1 and CS2

Given the fact that this intersection is not really large enough to make a meaningful
assessment for each of these three approaches to the introductory curriculum, let us next
consider an intersection of topicsfor the entire first year of introductory material, CS1

and CS2.

Since it isimportant to focus only on implementations that al three programming-
first approaches share, and there is no three-semester implementation for functional-first,
we will only consider the two-semester sequences of the programming-first approaches

while looking for the intersection in CS1 and CS2.

3.24.1 Knowledge Area Analysis

Table 3-11 shows the knowledge areas common to the first two semesters (CS1 &

CS2) of all three programming-first approaches.

Knowledge Area IFCS1& CS2 | OFCS1 & CS2 | FFCSL & CS2
Algorithms and Complexity (AL)
Programming Fundamental s (PF)
Programming Languages (PL)

Social and Professional |ssues (SP)
Software Engineering (SE)

Discrete Structures (DS)

Graphics and Visual Computing (GV)
Architecture and Organization (AR)
Human-Computer Interaction (HC) X
Operating Systems (OS) X
Computational Science (CN)
Information Management (IM)
Intelligent Systems (1S)
Net-Centric Computing (NC)

XXX XX

XXX XXX

x

XXX XXX XX

Table 3-11: Knowledge Area Coverage for Programming-first CS1 & CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Although a few new knowledge areas are now included, the intersection isidentical to

that of CS1 above.

3242 Knowledge Unit Analysis

Since the knowledge area intersection was the same, it isimportant to determine

which knowledge units are covered by all three approaches in both CS1 and CS2. These

results can be seen in Table 3-12 through Table 3-16.

Knowledge Unit IF CS1-CS2 OF CS1-Cs2 FF CS1-Cs2
PF1. Fundamental programming constructs X X X
PF2. Algorithms and problem-solving X X X
PF3. Fundamental data structures X X X
PF4. Recursion X X X
PF5. Event-driven programming X X

Table 3-12: Programming Fundamentals K nowledge Unit Coverage for CS1 and CS2

Knowledge Unit IF CS1-CS2 OF CS1-Cs2 FF CS1-Cs2
AL1. Basic algorithmic analysis X X X
AL 3. Fundamental computing algorithms X X X
ALS. Basic computability X X X
AL2. Algorithmic strategies X X

ALA4. Distributed Algorithms

AL6. The complexity classes P and NP

AL7. Automata theory

ALS8. Advanced arithmetic analysis

AL9. Cryptographic agorithms

AL 10. Geometric algorithms

AL11. Parallel algorithms

Table 3-13: Algorithmsand Complexity Knowledge Unit Coveragein CS1 and CS2

72 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Knowledge Unit IF CS1-CS2 OF CS1-Cs2 FF CS1-Cs2
PL1. Overview of programming languages X X X

PL2. Virtual machines X X X

PL4. Declarations and types X X X

PL5. Abstraction mechanisms X X X

PL6. Object-oriented programming X X X

PL3. Introduction to language transation X

PL7. Functional programming X

PL8. Language trand ation systems

PL9. Type systems

PL 10. Programming language semantics
PL11. Programming language design

Table 3-14: Programming L anguages K nowledge Unit Coveragein CS1 and CS2

Knowledge Unit IFCS1-CS2 | OF CS1-CS2 | FFCS1-CS2
SP1. History of computing X X X
SP5. Risks and liahilities of computer-based systems X

SP2. Social context of computing

SP3. Methods and tools of analysis

SP4. Professional and ethical responsibilities
SP6. Intellectual property

SP7. Privacy and civil liberties

SP8. Computer crime

SP9. Economic issues in computing

SP10. Philosophical frameworks

Table 3-15: Social and Professional | ssues Knowledge Unit Coveragein CS1 and CS2

Knowledge Unit IF CS1-CS2 OF CS1-Cs2 FF CS1-CSs2
SE1. Software design

SE2. Using APIs

SE3. Software tools and environments

SES5. Software requirements and specifications
SE6. Software validation

SE4. Software processes

SE7. Software evolution

SE8. Software project management

SE9. Component-based computing

SE10. Formal methods

SE11. Software reliability

SE12. Speciaized systems devel opment

XXX XX
X XXX [X
X XXX [X

Table 3-16: Software Engineering Knowledge Unit Coveragein CS1 and CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

73

Notice that there are now 18 instead of only 10 knowledge units common to all three

programming-first approaches. The new knowledge units included for the CS1-CS2

intersection are:

* PF4. Recursion
* AL1 Basicagorithmic analysis

* PL1. Overview of programming languages

e PL2. Virtual machines

» PL6. Object-oriented programming

e SE2.Using APIs

e SEb. Software requirements and specifications

* SE6. Software validation

3243

Once again, it isimportant to consider the percentage of coverage these knowledge

Analysis of Knowledge Unitsin the I nter section

units represent. These results are summarized in the Table 3-17.

IFCS1-CS2 | OF CS1-CS2 | FFCS1-Cs2
Total number of Knowledge Units Covered in CS1 23 23 23
Number of Knowledge Unitsin Intersection 18 18 18

Percentage Covered by Intersection

78%

78%

78%

Percentage Not Covered by Intersection

22%

22%

22%

Table 3-17: Percentages of Knowledge Units Covered by I ntersection

These results are promising, showing that in fact there are an equal number of

knowledge units covered by each of the three programming-first CS1s and CS2s.

Furthermore, the intersection comprises over three-quarters of the knowledge units

covered in the courses.

The analysis of how many lecture hours are covered by the knowledge unitsin the

intersection is even more promising. The results of this analysis are presented in Table 3-

18.

74 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

IF CS1-CS2 OF CS1-CSs2 FF CS1-Cs2
Total number of lecture hoursin CS1 80 80 80
Number of lecture hours covered by knowledge 69 70 65

unitsin Intersection

Percentage Covered by Intersection

86%

88%

81%

Percentage Not Covered by Intersection

14%

12%

19%

Table 3-18: Percentages of Total Course Lecture Hours Covered by | nter section

With this new intersection of knowledge units from CS1 and CS2, there isvery little
lecture time for each course that is devoted to topics outside of the intersection. In fact,
for al three approaches, over 80% of the lecture timeis spent on material in the
intersection. Thisintersection seems to be a much stronger basis from which to extract

topics for the assessment instrument.

In fact, one notices that objects-first leads in the amount of course coverage devoted
to the intersection of topics that are common to all three approaches. This could be used
as an argument in favor of objects-first, because it appears to have the most time devoted

to topics that CC2001 deems to be the core of CS1-CS2.

3.24.4 Analysisof Topicsfrom the Knowledge Unit I ntersection

There is one more level of description that defines a knowledge area: the topics
included in each knowledge unit. It isimportant to look at these topics to ensure that the
three approaches are not covering vastly different topics within the same knowledge unit.
Appendix A of CC2001 givesthe listing of topics that should be covered for each of the

knowledge units.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 75

The first attempt to identify the topics covered in each of the courses involved
looking at the section labeled Syllabus in the sample course descriptions given in
Appendix B of CC2001. The syllabusis described as a“bulleted list providing an outline
of the topics covered” (Joint Task Force on Computing Curricula 2001: 159). Quickly
browsing these topics, they seem to correspond with the topics listed for each of the

knowledge units.

For each knowledge unit in the intersection, | show which topics from the knowledge
unit are covered by each of the three programming-first CS1-CS2 sequences (see Table
3-19 through Table 3-36).1° Asan alternative view, the next set of tables (Table 3-37
through Table 3-42) show which topics are covered by all three approaches, which topics
are covered by only two of the three approaches, which topics are covered by only one of

the approaches, and which topics are covered by none of the approaches.

PF1. Fundamental Programming Constructs Topics IFCS1-CS2 | OF CS1-CS2 | FFCS1-CS2
Basic syntax and semantics of a higher-level language X X X
Conditional and iterative control structures X X X
Functions and parameter passing X X X
Variables, types, expressions, and assignment X X X
Simple 1/0 X X
Structured decomposition X X

Table 3-19: PF1. Fundamental Programming Constructstopics covered in programming-first CS1-
Cs2

19 Please note that since these tables were created using this technique of skimming the syllabus sections of
CC2001, severa of the tables may seem to be missing topics. The discussion of thisfact and resolutions of
some of the apparent ambiguities are discussed in §3.2.5—3.2.8.

76 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME
PF2. Algorithms and problem-solving Topics IFCS1-CS2 | OF CS1-CS2 | FFCS1-CS2
The concept and properties of algorithms X X X
Implementation strategies for algorithms X X X
Problem-solving strategies X X X
Debugging strategies X X
Therole of agorithmsin the problem-solving process X

Table 3-20: PF2. Algorithms and Problem-Solving topics covered in programming-first CS1-CS2

PF3. Fundamental Data Structures IF CS1-CS2 OF CS1-Cs2 FF CS1-Cs2
Arrays X X
Linked structures X : r;(pfgr?weeﬁié ?icgn) X
Strings and string processing X X X
Implementation strategies for graphs and trees X X (introduction)
Implementation strategies for stacks, queues, and X X (use of, not

hash tables implementation)

Pointers and references X X
Primitive types X X
Records X X
Strategies for choosing the right data structure X X
Data representation in memory X

Static, stack, and heap allocation X

Runtime storage management X

Table 3-21: PF3. Fundamental Data Structurestopics covered in programming-first CS1-CS2

PF4. Recursion IF CS1-CS2 OF CS1-C32 FF CS1-CSs2
The concept of recursion X X X

I mplementation of recursion X X

Divide-and-conquer strategies X X
Recursive backtracking X X
Recursive mathematical functions X X
Simple recursive procedures X X

Table 3-22: PF4. Recursion topics covered in programming-first CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 77
ALL1. Basic algorithmic analysis IF CS1-CSs2 OF CS1-C32 FF CS1-Cs2
Asymptotic analysis of upper and average X X
complexity bounds

i i - X (BigO X (BigO
Big O, little 0, omega, and theta notation only) only)
Empirical measurements of performance X X
Standard complexity classes X X

| dentifying differences among best, average, and
worst case behaviors

Time and space tradeoffsin algorithms

Using recurrence relations to analyze recursive
algorithms

Table 3-23: AL 1. Basic Algorithmic Analysistopics covered in programming-first CS1-CS2

. . IFCS1- | OFCS1- | FFCSI-

AL3. Fundamental computing algorithms c cs2 cs
Sequential and binary search algorithms X X
Binary search trees X

Hash tables, including collision-avoidance strategies X

O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) X

Quadratic sorting al gorithms (selection, insertion) X

Simple numerical algorithms X

Depth- and breadth-first traversals

Minimum spanning tree (Prim’s and Kruskal’ s algorithms)

Representations of graphs (adjacency list, adjacency matrix)

Shortest-path algorithms (Dijkstra’ s and Floyd’ s algorithms)

Topological sort

Transitive closure (Floyd' s algorithm)

Table 3-24: AL 3. Fundamental Computing Algorithmstopics covered in programming-first CS1-

Cs2
ALS5. Basic computability IF CS1-CS2 OF CS1-Cs2 FF CS1-CS2
Tractable and intractable problems X X
Uncomputable functions X X

Context-free grammars

Finite-state machines

The halting problem

Implications of uncomputability

Table 3-25: AL5. Basic Computability topics covered in programming-first CS1-CS2

78 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

IF CS1- OF CS1- FF CS1-

PL1. Overview of programming languages cs cs2 cs2
Brief survey of programming paradigms: Procedural

languages, Object-oriented languages, Functional languages, X X
Declarative, non-algorithmic languages, Scripting languages

History of programming languages X X

The effects of scale on programming methodol ogy

Table 3-26: PL 1. Overview of Programming Languagestopics covered in programming-first CS1-

Cs2
PL2. Virtual machines IF CS1-CS2 OF CS1-Cs2 FF CS1-Cs2
The concept of avirtual machine X X
Hierarchy of virtual machines X X
Intermediate languages X X
Security issues arising from running code on X
an alien machine

Table 3-27: PL2. Virtual Machinestopics covered in programming-first CS1-CS2

PL 4. Declarations and types IFCS1-CS2 | OFCS1-CS2 | FFCS1-CS2
The conception of types as a set of values with
together a set of operations

Declaration models (binding, visibility, scope, and
lifetime)

Overview of type-checking

Garbage collection

Table 3-28: PL4. Declarations and Typestopics covered in programming-first CS1-CS2

IF CS1- OF CS1- FF CS1-
CSs2 CSs2 CSs2

Procedures, functions, and iterators as abstraction mechanisms X
Parameterization mechanisms (reference vs. value)
Activation records and storage management

Type parameters and parameterized types
Modulesin programming languages

PL5. Abstraction mechanisms

Table 3-29: PL5. Abstraction M echanismstopics covered in programming-first CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 79

PL6. Object-oriented programming

IF CS1-CS2

OF CS1-CS2

FF CS1-CS2

Classes and subclasses

X

X

X

Collection classes and iteration protocols

Inheritance (overriding, dynamic dispatch)

Object-oriented design

X
X
X

Class hierarchies

Encapsulation and information-hiding

Polymorphism (subtype polymorphism vs. inheritance)

Separation of behavior and implementation

XX XX XX X

XX X|[X]|X|X]|X

Internal representations of objects and method tables

Table 3-30: PL6. Object-oriented Programming topics covered in programming-first CS1-CS2

SP1. History of computing

IF CS1-CS2

OF CS1-CS2

FF CS1-CS2

Prehistory — the world before 1946

History of computer hardware, software, networking

Pioneers of computing

Table 3-31: SP1. History of Computing topics covered in programming-first CS1-CS2

SE1. Software design IF CS1-CS2 OF CS1-Cs2 FF CS1-CSs2
Design patterns X X X
Fundamental design concepts and principles X X X
Structured design X X
Design for reuse X

Object-oriented analysis and design X

Component-level design

Software architecture

Table 3-32: SE1. Software Design topics covered in programming-first CS1-CS2

SE2. Using APIs IF CS1-CS2 OF CS1-Cs2 FF CS1-CS2
API programming X
Class browsers and related tools X
Debugging in the API environment X
Programming by example X
Introduction to component-based computing

Table 3-33: SE2. Using APIstopics covered in programming-first CS1-CS2

80 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

SE3. Software tools and environments IFCS1-CS2 | OF CS1-CS2 | FFCS1-Cs2
Programming environments X X
Testing tools X

Configuration management tools

Requirements analysis and design modeling tools

Tool integration mechanisms

Table 3-34: SE3. Software Tools and Environments topics cover ed in programming-first CS1-CS2

SE5. Software requirements and specifications

IF CS1-CS2

OF CS1-Cs2

FF CS1-CS2

Requirements elicitation

Requirements analysis modeling techniques

Functional and nonfunctional requirements

Prototyping

Basic concepts of formal specification techniques

Table 3-35: SE5. Softwar e Requirements and Specifications Constructstopics covered in
programming-first CS1-CS2

generation

I IFCS1- | OFCSl1- | FFCSl-
SE6. Software validation cs cs2 cs2
Testing fundamentals, including test plan creation and test case X

Validation planning

Black-box and white-box testing techniques

Unit, integration, validation, and system testing

Object-oriented testing

Inspections

Table 3-36: SE6. Softwar e Validation topics covered in programming-first CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

81

Topic

IF CS1-

OF CS1-Cs2

FF CS1-

PF1. Basic syntax and semantics of a higher-level language

>

PF1. Variables, types, expressions, and assignment

PF1. Conditiona and iterative control structures

PF1. Functions and parameter passing

PF2. Problem-solving strategies

PF2. Implementation strategies for algorithms

PF2. The concept and properties of algorithms

PF3. Arrays

PF3. Strings and string processing

XXX XX XXX

PF3. Linked structures

X (use of, not
implementation)

PF4. The concept of recursion

X

PL6. Object-oriented design

PL6. Classes and subclasses

PL6. Inheritance (overriding, dynamic dispatch)

PL6. Collection classes and iteration protocols

SE1. Fundamental design concepts and principles

SE1. Design patterns

XX | X [X|X|X][X]| X ><><><><><><><><><@

XX | X [XXX

XX | X [X|X|X[X]| X ><><><><><><><><><@

Table 3-37: Topics covered by all three approachesto CS1-CS2

82 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Topic IFCSI- | oFcsicse | FECSE

PF1. Smple /O

PF1. Structured decomposition

PF2. Debugging strategies

PF3. Primitive types

PF3. Records

XX XX XX

PF3. Pointers and references

PF3. Implementation strategies for stacks, queues, and hash
tables

X (use of, not
implementation)

PF3. Implementation strategies for graphs and trees X (introduction)

PF4. Implementation of recursion X

PF3. Strategies for choosing the right data structure

PF4. Recursive mathematical functions

PF4. Simple recursive procedures

PF4. Divide-and-conquer strategies

PF4. Recursive backtracking

AL1. Asymptotic analysis of upper and average complexity
bounds

> ||| > |x|x|x|x| x ><><><><><><§

Tl X XX XXX

X (Big
O only)

ig
ly)

O X
o
S

AL1. Big O, little 0, omega, and theta notation

X

AL1. Standard complexity classes

AL1. Empirical measurements of performance

AL 3. Sequential and binary search algorithms

ALDS. Tractable and intractable problems

AL5. Uncomputable functions

XX | X[X[X
XXX [X|[X]| X

PL 1. History of programming languages

PL1. Brief survey of programming paradigms:Procedural
languages, Object-oriented languages, Functional languages,
Declarative, non-algorithmic languages, Scripting languages

x
x

PL 2. The concept of avirtual machine

PL2. Hierarchy of virtual machines

PL2. Intermediate languages

PL6. Encapsulation and information-hiding

PL6. Separation of behavior and implementation

PL6. Polymorphism (subtype polymorphism vs. inheritance)

PL6. Class hierarchies

SE1. Structured design

XXX XXX XXX
XXX XXX XXX

SE3. Programming environments

Table 3-38: Topics covered by two of three approachesto CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 83
Topic IFCS1- | OF CS1- | FFCSL-
Cs2 Cs2 Cs2

PF3. Data representation in memory X

PF3. Static, stack, and heap allocation X

PF3. Runtime storage management X

AL3. Quadratic sorting algorithms (selection, insertion) X

AL3. O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) X

AL 3. Hash tables, including collision-avoidance strategies X

AL3. Binary search trees X

SE1. Object-oriented analysis and design X

SE1. Design for reuse X

PF2. The role of algorithms in the problem-solving process

AL3. Simple numerical algorithms

PL2. Security issues arising from running code on an alien machine

PL5. Procedures, functions, and iterators as abstraction mechanisms

SE2. API programming

SE2. Class browsers and related tools

SE2. Programming by example

SE2. Debugging in the API environment

SE3. Testing tools

SE6. Testing fundamentals, including test plan creation and test case
generation

XXX X XXX X | X [X

Table 3-39: Topics covered by one of three approachesto CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Topic

AL1. Identifying differences among best, average, and worst case behaviors
AL1. Time and space tradeoffs in algorithms

AL 1. Using recurrence relations to analyze recursive algorithms
AL 3. Representations of graphs (adjacency list, adjacency matrix)
AL3. Depth- and breadth-first traversals

AL 3. Shortest-path algorithms (Dijkstra’s and Floyd’ s algorithms)
AL3. Transitive closure (Floyd’ s algorithm)

AL3. Minimum spanning tree (Prim’s and Kruskal’ s algorithms
AL3. Topological sort

ALDS. Finite-state machines

ALDS. Context-free grammars

ALS. The halting problem

ALS5. Implications of uncomputability

PL1. The effects of scale on programming methodol ogy

PL4. The conception of types as a set of values with together a set of operations
PL4. Declaration models (binding, visibility, scope, and lifetime)
PL4. Overview of type-checking

PL4. Garbage collection

PL5. Parameterization mechanisms (reference vs. value)
PL5. Activation records and storage management

PL5. Type parameters and parameterized types

PL5. Modules in programming languages

PL6. Internal representations of objects and method tables
SP1. Prehistory — the world before 1946

SP1. History of computer hardware, software, networking
SP1. Pioneers of computing

SE1. Software architecture

SE1. Component-level design

SE2. Introduction to component-based computing

SE3. Requirements analysis and design modeling tools
SE3. Configuration management tools

SE3. Tool integration mechanisms

SES5. Requirements elicitation

SES5. Requirements analysis modeling techniques

SES5. Functional and nonfunctional regquirements

SES5. Prototyping

SES5. Basic concepts of formal specification techniques
SE6. Validation planning

SE6. Black-box and white-box testing techniques

SE6. Unit, integration, validation, and system testing

SE6. Object-oriented testing

SEB6. Inspections

Table 3-40: Topics covered by none of the three approachesto CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 85
3.245 Analysisof Hours Covered by Each Approach for each Knowledge Unit

In each of the sample Syllabus sections for each approach, there is an indication of
how many core hours should be covered for each knowledge unit presented. Recall that
topics that are indicated as core topics in CC2001 are considered the foundational core of
the discipline. CC2001 gives arecommendation of classroom time that should be
devoted to core topics throughout the curriculum. Therefore, for purposes of this
dissertation core hours are classroom hours that should be devoted to a particular topic.
Thisinformation isimportant in giving further indication of how many hours are devoted
to each knowledge unit by each of the introductory approaches. Table 3-41 summarizes

the number of hours covered for each knowledge unit as given Appendix B of CC2001.

86 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Knowledge Unit

Total Hoursin

Imperative-first

Objects-first CS1-

Functional -first

Knowledge Unit CS1-Cs2 CS2 Hours CS1-CS2 Hours
Hours™

PF;;()';‘;;?%?%“ o 9+0=9 7+2=9 3+6=9
Constructs (100%) (100%) (100%)

PF2. Algorithms and 6 3+0=3 2+2=4 2+1=3
Problem Solving (50%) (67%) (50%)

PF3. Fundamental 14 6+6=12 3+8=11 6+5=11
Data Structures (86%) (79%) (79%)

PF4. Recursion 5 0+5=5 2+3=5 5+0=5
(100%) (100%) (100%)

AL1. Basic 4 0+2=2 0+2=2 2+0=2
Algorithmic Analysis (50%) (50%) (50%)

A"%gr‘;gﬂf‘i”;gma' " 2+4=6 3+3=6 4+2=6
Algorithms (50%) (50%) (50%)

ALS5. Basic 6 1+0=1 1+0=1 1+0=1
Computability (17%) (17%) (17%)

PLPlr'Ogr"a?;‘%ie‘r’]"go‘c) 1+1=2 0+2=2 1+1=2
Lan (100%) (100%) (100%)

guages

PL2. Virtual 1 0+1=1 0+1=1 0+1=1
Machines (100%) (100%) (100%)

PL4. Declarations 3 1+2=3 2+1=3 1+2=3
and Types (100%) (100%) (100%)

PL5. Abstraction 3 2+1=3 1+2=3 1+2=3
Mechanisms (100%) (100%) (100%)

PL6. Object-Oriented 10 3+7=10 8+4=12 0+8=8
Programming (100%) (120%) (80%)

SP1. History of 1 1+0=1 1+0=1 1+0=1
Computing (100%) (100%) (100%)

SE1. Software 8 2+2=4 2+2=4 1+3=4
Design (50%) (50%) (50%)

SE2. Using API's 5 0+2=2 1+1=2 0+2=2
(40%) (40%) (40%)

SE3. Software Tools 3 1+2=3 2+0=2 1+1=2
and Environments (100%) (67%) (67%)

Requirementsenc 4 1+0=1 | 0+1=1 0+1=1
Specifications (25%) (25%) (25%)

SE6. Software 3 1+0=1 0+1=1 0+1=1
Validation (33%) (33%) (33%)

Table 3-41: Hours devoted to each knowledge unit for programming-first CS1-CS2

" Hoursin this table are given in the form CS1Hours + CS2 Hours = Total hours for sequence

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 87

3246 Problemswith Smply “Reading” the Syllabi

There are numerous problems with this “shallow” reading approach to the topics.
Simply using the method of “shallow” reading the descriptions of the Syllabus sections of
the course descriptions does not seem to give proper results for topical coverage. Taking
for example just the last table in the analysis (Table 3-36), the only approach that has an
X inany of the rowsisfunctional-first. However, according to the table of number of
hours covered (Table 3-41), each of the three approaches has coverage for this knowledge

unit.

The following inconsistencies have been discovered when simply using a “shallow”
approach to creating the topic intersection and each point to aneed for a deeper reading

of the syllabi and an analysis that is deeper than simply reading terms and topics.

* The number of hours covered indicates that the knowledge unit is covered in
its entirety; however, not al of the topics from the knowledge unit are
indicated in the intersection. For example, PF4 is supposed to be covered in
full by all three approaches. However, Table 3-22 reveals that not all

knowledge units are included for all three approaches.

* A knowledge unit is supposed to be covered in the courses, but there are no
topics marked for that knowledge unit for any of the approaches. For
example, SE5 is supposed to have coverage in the intersection, but according

to Table 3-35, none of the topics are indicated for any of the approaches.

88 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

» One approach does not have any topics indicated for a particular knowledge
unit, while the other two approaches have topics that seem to give an accurate
picture of the coverage of that unit. For AL1 (Table 3-23), no coverageis
indicated for objects-first, while the other two approaches have coverage

indicated that corresponds with the 50% coverage indicated in Table 3-41.

» Only one approach has topics indicated for a particular knowledge unit, while
the others have no topicsindicated. For example, in Table 3-29 for PL5, only
functional-first has knowledge units indicated, but all three need to have

knowledge units indicated in this knowledge area.

» Thereissimply ageneral mismatch within the topic. For example, in Table
3-34 for SE3, two-thirds or more of the topics should be covered for each
approach. Only onetopic (out of five) isindicated for imperative-first, none

indicated for objects-first, and two indicated for functional -first.

Of al of these, the last point is the least bothersome. It would be reasonable to expect
that not all of the approaches cover the exact same material in these knowledge units.
However, it isimportant to look at this type of mismatch to make sure there are no topics

that should be included in this analysis.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 89
3.25 Resolution of Discrepancies
3.251 Reasons for Inconsistencies

Whileit is difficult to determine the exact causes for the discrepancies between the
Syllabus and Units covered sections, thereis definitely alack of uniformity between the
language of the sample syllabi and the language in the knowledge-unit topic descriptions.
Given how CC2001 was constructed (by various subcommittees), it is easy to postulate
that while some subcommittees followed the language of the knowledge units while

creating the syllabi, some did not.

The biggest offenders appear to be the objects-first syllabi. The “shalow” reading
approach leaves many holesin the topical coverage, even in section PL6-Object-oriented

programming (see Table 3-30), which the objects-first model focuses most heavily upon.

The other two sets of syllabi suffer from some of the same language issues, but not to
the extent of the objects-first topics. For the purposes of creating this assessment
instrument, the topics included in the intersection using both a“shallow” reading of the
Syllabus sections of the course descriptions as well as the more in-depth analysis

presented in 83.2.6 —3.2.8.

3.25.2 All topicsshould be covered, not all wereindicated

In some knowledge units, Table 3-41 indicates that all core hours of atopic will be

covered in the introductory sequence, but, in the “shallow” read of the syllabus topics,

90 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

not all of the topicsin that knowledge areareceived an X. This happens for the following

knowledge units:

e PF1. Fundamenta Programming Constructs
* PF4. Recursion

* PL1. Overview of Programming Languages
* PL2. Virtua Machines

* PL4. Declarations and Types

* PL5. Abstraction Mechanisms

* PL6. Object-oriented Programming

» SP1. History of Computing

For each of these knowledge units, there is a pattern of incomplete descriptionsin the
syllabustopics. For example, in SP1, History of Computing, all three syllabi indicate in a
broad fashion that the history of computing should be covered and that it should be
covered for one full course hour. However, there is no indication in the syllabus of the
specific listing of the topics for SP1 as given in Appendix B. In this case, we can resolve
this discrepancy by assuming that there has simply been alack of attention to detail by

the CC2001 committee that led to this oversight.

For PF1, Fundamental Programming Constructs, simple 1/0O and structured
decomposition are the topics not indicated in the objects-first approach. Since the entire
knowledge unit is supposed to be covered, | again assume the oversight to be alack of

attention to detail.

For PF4, Recursion, again we notice missing topics in the objects-first column. Itis
unreasonabl e to think that, if oneistalking about the “implementation of recursion” in a

course then “simple recursion” would not be included in that discussion. Similar

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 91

arguments can be made for each of the topics in this knowledge unit, so they should al be
included in the intersection. The topic “implementation of recursion” is also missing for
functional-first. Thisisalso unreasonable given that al of the rest of the topics are
covered. Also, given the fact that functional languages rely heavily on recursion as a
base in the language, it is not reasonabl e to assume that implementation of recursion
would be ignored in this approach. Therefore, this topic should be included for the

functional-first approach.

For PL1, Overview of Programming Languages, thereis asimilar situation as with
SP1, History of Programming: the syllabi indicate coverage, but there is no mention of
some of the specific topics. Since the entire core hours should be covered, these topics

should be restored to the intersection.

For PL2, Virtual Machines, the topic “security issues arising from running code on an
alien machine” is missing in imperative-first and no indication of coverage of any topicin
the objects-first approach. Once again, this seemsto be an oversight. For objects-first,
many of the newly popular object-oriented languages, especially Java, use virtual
machines extensively. Therefore, it would be anatural part of the course to explain how

the language works. All topics from this knowledge unit are included in the intersection.

For PL4, Declarations and Types, and PL5, Abstraction Mechanisms, very few topics
have been included. In fact, for PL4, no topics have been included for any of the
approaches. However, for both of these sections, this current set of topics does not make

sense. For example, in PL4, one of the topics should cover such ideas as binding,

92 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

visibility, scope, and lifetime. Thisis clearly apart of any introductory sequence when
discussing local variables and should be included in the set of topics. For these topics, it
seems to once again to be an oversight and lack of detail in the syllabus topics.

Therefore, al topics for these two knowledge units will be included.

3.25.3 Topicsshould becovered, noneor onewereindicated

We can resolve the discrepancies for two of the knowledge units, SE5, Software
Requirements and Specifications, and SE6, Software Validation. For each of these
knowledge units, an amount of coverage greater than zero is indicated for each approach,

however, no topics are indicated on the grid for SE5 and only one for SE6.

For SE5, each approach should have 1 course hour devoted to it, which accounts for
only 25% of the time for that knowledge unit in the curriculum. Unfortunately, the
syllabi do not give us agood indicator of what topics should be the focus of the coverage
for this knowledge area. Therefore, it isimportant to decide which topics seem to be most
appropriate for introductory courses and the amount of time that should be spent on these
topics. Inthiscase, it ismost appropriate to include the topics of requirements elicitation

and functional and nonfunctional requirements for each of the approaches.

Each approach should also have 1 course hour devoted to SE6, which will account for
33% of the time for that knowledge unit in the curriculum. Thereis someindication in
the functional -first approach that the topic of testing fundamentalsis covered in that

approach. Thistopic, which also includes test-plan generation and test-case generation,

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 93

seems to be a prime candidate for the other two approaches as well, because it is common
to see some sort of testing taught during the first year. Therefore, we include this topic
for al three approaches. Also, dueto the inclusion of alarge portion of the topics of

PL6, Object Oriented Programming, by each of the approaches, it islogical to include the

topic of object-oriented testing in the intersection.

Both SE5 and SE6 are in the knowledge area of Software Engineering. Since the
focus for this dissertation is topics that can and should be introduced at the introductory
level, these topics should be broad in scope and those that are most immediately
important to students building their first computer programs. Therefore, the inclusion of
testing techniques is appropriate. The topic of requirements elicitation should be viewed
in its most general sense of “what does this program have to do?’ It is not reasonable to
include more formal requirements-elicitation techniques, but rather to have the students
experiment with how to find out what their projects should be capable of by asking
guestions about the assignments given in class. In regard to the functiona and
nonfunctional requirements, students at this level should be exposed to the general ideas

about the differences between what a program does and how it 1ooks, sounds, etc.

3.25.4 All approaches should have topics cover ed, but only two of three do

From the tables, there are three knowledge units where topics are indicated for only

two of the three approaches.

94 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

For AL1, Basic Algorithmic Analysis, no topics are given for objects-first, while the
other two approaches include the exact same topics. For each of the three approaches,
two course hours should be devoted to this knowledge area. Therefore, it must be
decided which topicsto include for objects-first. 1t would stand to reason that quite
possibly all three approaches should cover the same materia in these two hours. Looking
at the wording of the syllabus for objects-first, thereis an indication that there should be
an “Introduction to basic algorithm analysis’ (Joint Task Force on Computing Curricula
2001: 177). Therefore, in the intersection, the topics covered for objects-first will be

made the same as the other two approaches.

For AL5, Basic Computability, the imperative-first and functional-first approaches
have the exact same topics indicated, while no topics are indicated for objects-first.
Objects-first is supposed to cover one course hour of this knowledge unit, which isthe
same amount of time as the other approaches. The other two approaches cover the topics
of tractable and intractable problems, as well as uncomputable functions. These two
topics are basic introduction-to-computability topics that are appropriate for an
introductory sequence. The other topics in this knowledge unit would fit better in a
slightly more advanced course looking at issues of computability and not necessarily
focusing on programming. Therefore, the topics for objects-first will be the same as

those for the other two approaches.

For SE3, Software Tools and Environments, no topics are indicated for objects-first.

The other two approaches indicate the topic of programming environments. Thistopic

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 95

makes sense for objects-first aswell. The further description of the objects-first approach
says that “Many courses that adopt an objects-first approach will do so in an environment
that supports arich collection of application programmer interfaces or APIS’ (Joint Task
Force on Computing Curricula 2001: 176). Therefore, it would seem reasonable that
with alarge number of APIs, programming environments become important. Even
without the APIs, any time one creates a computer program, there is an environment that
oneisworking with to create that program. An introduction to that environment should

certainly be given in the introductory courses.

However, one problem for this knowledge unit is the amount of course coverage time
alotted for it. For imperatives-first, it isindicated that 100% of the unit should be
covered. For the other two approaches, it indicates two-thirds of the hours to be given in
the introductory sequence. Therefore, it would be most appropriate for imperative-first to
have all topicsindicated for this knowledge unit. For functional-first, the topic of testing
toolsisindicated as covered. It also makes sense that the objects-first approach covers
testing, because it is just as important in objects-first as the other approaches. It isalso
reasonabl e to assume that students are exposed to some sort of design modeling tool (e.g.
flow charts, CRC cards, UML) in the introductory sequence. An emphasisis placed on
design in al of the approaches, and while students are being instructed on design, they
will be shown some sort of tool that hel ps them use a particular design technique.

Therefore, the topic of design modeling tools should be included in the intersection.

96 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

3.255 All approaches should havetopics covered, but only one of threedo

For SE2, Using APIs, topical coverageisindicated only in the functional-first
approach. However, in 8§3.2.5.4, we concluded that APIs should be included in the
objects-first model. This once again seems to be a case of lack of detail, given the
syllabus' s topics-covered section. For objects-first, thereis a genera indication of using
APIs, but no details are given about which specific topics from that knowledge unit are
covered (Joint Task Force on Computing Curricula2001: 175). Indications are al'so
given for imperative-first in the topic section, where it states that one should present
“Using agraphics API” (Joint Task Force on Computing Curricula 2001: 166).

Therefore, there are broad indications that this topic is presented in al three approaches.

In order to answer which topics are covered by the approaches, let uslook at the
amount of course coverage hours for this knowledge unit. Two hours are indicated for all
approaches for this knowledge unit, encompassing 40% of the total coverage for the
knowledge unit. The functional-first approach says that four out of the five topics should
be covered in that time. It does not seem likely that the four topics could be covered with
significant depth in that time; however, a general introduction could be given to each of
the topics. The only topic not indicated is an introduction to component-based
computing, which is not appropriate for any of the approaches at thislevel. However, a
general introduction to the other topicsis appropriate, and we have included those topics

in our intersection.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 97

3.25.6 Non-uniform topical coverage across approaches

With the previous problemsin the intersection, there were significant gaps in topical
coverage that needed to be addressed, such as entire knowledge units that should be
covered having no topicsindicated. The remaining topics do not have such glaring
omissions but are not uniform in topic coverage. However, each topic must be
considered, to decide if the currently indicated topic coverage is appropriate or if there
arein fact omissionsin the topical coverage that should be included in our final

intersection.

For PF2, Algorithms and Problem Solving, some omissions seem to be due to lack of
attention to detail. For imperative-first and objects-first, the topic of the role of
algorithms in the problem-solving processis not indicated. However, if you are
implementing algorithms, as indicated by both approaches, you will use them in their role
in the problem-solving process. Therefore, thistopic should beincluded. In objectsfirst,
the topic of debugging strategiesis also not indicated. This, too, seemslike an oversight.
It is not reasonable to assume that an introductory course does not talk about debugging.
Therefore, we will aso include that topic. For this knowledge unit, all approaches
indicate all topics covered, but the amount of hours of coverage ranges from 50-66.67%.
Thiswould indicate that further coverage of these topics will aso be needed beyond the

first year of courses.

For PF3, Fundamental Data Structures, no topics are indicated for objects-first, while

imperative-first indicates that all topics are covered even though not al of the time

98 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

allocated for this knowledge unit has been covered. It should therefore be assumed that
some of the topicsindicated for the imperative-first approach are not covered in their

entirety or that they are only introduced.

For functional-first, some of the omissions of topics do not make sense. Since
knowledge unit DS5, Graphs and Trees, isincluded in CS1 according to the syllabus for
functional-first in CC2001, implementation of graphs and trees should also be discussed.
Also, list structures are indicated as being discussed, so it would be natural to assume that
stacks and queues would be included in that discussion. Consequently, these topics will

be included in our intersection.

For objects-first, primitive types are omitted. While the focus of objects-first is
objects, most languages have primitive types and many object-oriented languages use the
primitive types in the basic control structures, so it is reasonable to assume that this topic
should be covered. Sincethereisan indication of discussions of stacks and queues,
omitting linked structures seems like an oversight, so it will beincluded. Also, the
syllabus explicitly indicates that implementation of data structuresis not covered. This
does not seem likely; however, given that the syllabusis so explicit, it will not be
included™. Lastly, the omission of the last topic “strategies for choosing the right data
structure” isan oversight. When talking about data structuresin any form, it is most

appropriate to discuss how to choose one data structure; especially given that the objects-

12| ook to §3.2.8 for further discussion of thisissue.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 99

first approach does not discuss implementation, the topic of choosing the correct data

structure should most certainly be discussed.

For AL3, Fundamental Computing Algorithms, there is once again a case where
objects-first has no topicsindicated. For this knowledge unit, each approach should
cover six hours of topics, or 50% of the total time indicated for the knowledge unit. It
seems as though the imperative-first approach fulfills this requirement nicely, except for
what seems to be an oversight of the topic of simple numerical agorithms™. If the
courses will contain sorting and searching, simple numerical algorithms will most likely

be covered.

For functional-first, the first two topics are indicated. Thereisalso indication in the
syllabus for functional-first that sorting a gorithms are covered, but it does not provide
specific detail s about which ones (Joint Task Force on Computing Curricula 2001: 180).
However, it seems reasonabl e to assume that this approach should cover the standard set
of quadratic and O(N log N) sorting a gorithms; consequently, we will include those
topics. Also, the syllabus indicates that hierarchical data should be covered in CS1 using
this approach (Joint Task Force on Computing Curricula 2001: 178). Thiswould seem to
indicate coverage of trees and possibly graphs. Thisis further supported by the CS1
coverage of knowledge unit DS5, Graphs and Trees. Even though no other approach

seems to cover graphs, it is reasonable to assume that functional-first doesin part.

13 See 84.3.1.1 for more discussion of this term.

100 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

For objects-firgt, it is slightly more difficult to decide which topicsto pick from this
knowledge unit. Thereisjust alack of indication on the syllabi asto which topics are
covered. However, thereis no indication that graphs are covered in this approach. Since
the amount of time is the same as imperative-first, coverage will be given to topics that

are similar to the imperative-first model for this knowledge unit.

For PL6, Object-Oriented Programming, there are some shocking omissions from the
objects-first column. These omissions must be the result of oversight. It isunreasonable
to assume that the objects-first introductory sequence would not include polymorphism or
class hierarchies, when those topics are foundational to object-oriented programming
itself. Also, given that Table 3-41 indicates that 120% of the core hours should be
covered inthisarea, it isfairly safe to assume that these topics will be covered. The only
topic that is being left off isthe last, internal representations of objects and method tables.
None of the approaches indicate that this topic should be covered; however two of the
three approaches indicate full coverage of the hours for this knowledge unit. It seems
reasonabl e that with only 80% of coverage time allotted for these topics for functional -
firgt, thislast topic may be left off. Given that, it will not be included in the intersection.
Whether the other two approaches cover it isin question, so this topic will be left off

entirely.

SE1, Software Design, indicates the same amount of course coverage time for all
three approaches. Thefirst two topics areindicated for al approaches. Thethird topic,

software architecture, isindicated for none of the approaches. It seems reasonable to

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 101

postpone this topic for a course that is more focused on software engineering. The fourth
topic, structured design, is not indicated for objects-first. However, since object-oriented
design may not be viewed as structured design proper, it can remain empty for this
purpose. Thefifth topic, object-oriented design and analysis, should be included for all
three approaches, because even the imperative-first and functional-first spend effort in the
CS2 course on object-oriented concepts. The coverage in the non-objects-first
approaches will be less due to their original emphasis on structured design, while there
will be more of this topic emphasized in objects-first, balancing out the lack of structured
design coverage. The sixth topic is component-level design. Components may not be
covered by all approaches and should therefore be covered elsewhere in the curriculum.
Thelast topic, design for reuse, isindicated for objects-first, but not the other approaches.
Reuse is an important theme in object-oriented methodology. Other methodologies do
not rely as heavily on thisidea. Given the limited exposure to object-oriented

programming in the other two approaches, this topic will not be included.

3.2.6 Revised I nter section of Knowledge Unit Topical Coverage

Table 3-42 through Table 3-63 indicate a more realistic view of the intersection for

the programming-first approaches.

102 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

PF1. Fundamental Programming Constructs Topics IFCS1-CS2 | OF CS1-CS2 | FF CS1-CS2
Basic syntax and semantics of a higher-level language X X X
Conditional and iterative control structures X X X
Functions and parameter passing X X X
Simple /O X X X
Variables, types, expressions, and assignment X X X
Structured decomposition X X

Table 3-42: PF1. Fundamental Programming Constructs topics covered in programming-first CS1-

Cs2
PF2. Algorithms and problem-solving Topics IFCS1-CS2 | OF CS1-CS2 | FFCS1-CS2
Problem-solving strategies X X X
The role of algorithms in the problem-solving process X X X
Implementation strategies for algorithms X X X
Debugging strategies X X X
The concept and properties of algorithms X X X

Table 3-43: PF2. Algorithms and Problem-Solving topics covered in programming-first CS1-CS2

Data representation in memory
Runtime storage management
Static, stack, and heap alocation

PF3. Fundamental Data Structures IF CS1-CS2 OF CSs1-Cs2 FF CS1-Cs2
Arrays X X X
Implementation strategies for graphs and trees X X (introduction) X
Implementation strategies for stacks, queues, and X _ X (useof, not X
hash tables implementation)
Linked structures X in?n(pl(gr;s?eg;:a?i(())tn) X
Primitive types X X X
Strategies for choosing the right data structure X X X
Strings and string processing X X X
Pointers and references X X
Records X X

X

X

X

Table 3-44: PF3. Fundamental Data Structurestopics covered in programming-first CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

103

PF4. Recursion

IF CS1-CS2

OF CS1-Cs2

FF CS1-CS2

The concept of recursion

X

X

X

Recursive mathematical functions

Simple recursive procedures

Divide-and-conquer strategies

Recursive backtracking

XXX | X

XXX | X

XXX | X

I mplementation of recursion

>

>

X

Table 3-45: PF4. Recursion topics covered in programming-first CS1-CS2

AL1. Basic algorithmic analysis

IF CS1-CS2

OF CS1-CS2

FF CS1-CS2

Asymptotic analysis of upper and average
complexity bounds

X

X

X

Big O, little 0, omega, and theta notation

X (BigO
only)

X (BigO
only)

X (BigO
only)

Empirical measurements of performance

X

X

X

Standard complexity classes

X

X

X

Identifying differences among best, average, and
worst case behaviors

Time and space tradeoffsin algorithms

Using recurrence relations to analyze recursive
algorithms

Table 3-46:AL 1. Basic Algorithmic Analysistopics covered in programming-first CS1-CS2

AL3. Fundamental computing algorithms

IF CS1-CS2

OF CS1-Cs2

FF CS1-CS2

Binary search trees

X

X

O(N log N) sorting algorithms (Quicksort, heapsort,
mergesort)

Quadratic sorting al gorithms (selection, insertion)

Sequential and binary search algorithms

Simple numerical algorithms

X
X
X
X

Hash tables, including collision-avoidance strategies

XXX [X] X

XXX [X] X

Representations of graphs (adjacency list, adjacency
matrix)

Depth- and breadth-first traversals

Minimum spanning tree (Prim’s and Kruskal’s
algorithms)

Shortest-path algorithms (Dijkstra’ s and Floyd's
agorithms)

Topological sort

Transitive closure (Floyd’ s algorithm)

Table 3-47: AL 3. Fundamental Computing Algorithmstopics covered in programming-first CS1-
Cs2

104

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

ALS5. Basic computability IF CS1-CSs2 OF CS1-Cs2 FF CS1-Cs2
Tractable and intractable problems X X X
Uncomputable functions X X X

Context-free grammars

Finite-state machines

Implications of uncomputability

The halting problem

Table 3-48: AL5. Basic Computability topics covered in programming-first CS1-CS2

. . IF CS1- OF Csl- FF CS1-
PL1. Overview of programming languages cs cs2 cs2
History of programming languages X X X
Brief survey of programming paradigms:Procedural
languages, Object-oriented languages, Functional languages, X X X
Declarative, non-algorithmic languages, Scripting languages
The effects of scale on programming methodol ogy X X X

Table 3-49: PL1. Overview of Programming L anguages topics covered in programming-first CS1-CS2

PL2. Virtual machines IFCS1-CS2 | OFCS1-CS2 | FFCS1-CS2
The concept of avirtual machine X X X
Hierarchy of virtual machines X X X
Intermediate languages X X X
Security issues arising from running code on an

- ; X X X
alien machine

Table 3-50: PL2. Virtual Machinestopics covered in programming-first CS1-CS2

PLA4. Declarations and types IFCS1-CS2 | OF CS1-CS2 | FFCS1-CS2

The conception of types as a set of values with together
; X X X

a set of operations

Declaration models (binding, visibility, scope, and

e X X
lifetime)
Overview of type-checking X X
Garbage collection X X X

Table 3-51: PL4. Declarationsand Typestopics covered in programming-first CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

105

PL5. Abstraction mechanisms IFCS1-CS2 | OF CS1-CS2 | FF CS1-CS2
Procedu_ra functions, and iterators as abstraction X X X
mechanisms

Parameterization mechanisms (reference vs. value) X X X
Activation records and storage management X X X
Type parameters and parameterized types X X X
Modulesin programming languages X X X

Table 3-52: PL5. Abstraction M echanismstopics covered in programming-first CS1-CS2

PL6. Object-oriented programming

IF CS1-CS2

OF CS1-Cs2

FF CS1-CS2

Object-oriented design

X

X

X

Encapsulation and information-hiding

Separation of behavior and implementation

Classes and subclasses

Inheritance (overriding, dynamic dispatch)

Polymorphism (subtype polymorphism vs. inheritance)

Class hierarchies

Collection classes and iteration protocols

XX XXX X] X

XXX |[X]|X|X]| X

XXX |[X]|X|X]| X

Internal representations of objects and method tables

Table 3-53: PL6. Object-oriented Programming topics covered in programming-first CS1-CS2

SP1. History of computing IFCS1-CS2 | OF CS1-CS2 | FF CS1-CS2
Prehistory — the world before 1946 X X X
History of computer hardware, software, networking X X X
Pioneers of computing X X X

Table 3-54: SP1. History of Computing topics covered in programming-first CS1-CS2

SE1. Software design IF CS1-CS2 OF CS1-Cs2 FF CS1-Cs2
Design patterns X X X
Fundamental design concepts and principles X X X
Object-oriented analysis and design X X X
Structured design X X
Design for reuse X

Component-level design

Software architecture

Table 3-55: SE1. Software Design topics covered in programming-first CS1-CS2

106 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

SE2. Using APIs IFCS1-CS2 | OFCS1-CS2 | FFCS1-CS2
API programming X X X
Class browsers and related tools X X X
Programming by example X X X
Debugging in the API environment X X X
Introduction to component-based computing

Table 3-56: SE2. Using APIstopics covered in programming-first CS1-CS2

SE3. Software tools and environments IF CS1-CS2 OF CS1-CS2 FF CS1-CS2
Programming environments X X X
Reguirements analysis and design modeling tools X X (I}/Ioc())(lj;lmg X (I}/Ioc())(lj;lmg
Testing tools X X X
Configuration management tools X

Tool integration mechanisms X

Table 3-57: SE3. Software Tools and Environments topics covered in programming-first CS1-CS2

SE5. Software requirements and specifications IFCS1-CS2 | OFCS1-CS2 | FFCS1-CS2
Functional and nonfunctional requirements X X X
Requirements elicitation X X X
Basic concepts of formal specification techniques

Prototyping

Requirements analysis modeling techniques

Table 3-58: SE5. Softwar e Requirements and Specifications Constructstopics covered in
programming-first CS1-CS2

SE6. Software validation IF CS1-CS2 | OF CS1-CS2 | FFCSs1-Cs2
Object-oriented testing X X X

Testing fundamental s, including test plan creation
and test case generation

Black-box and white-box testing techniques
Inspections

Unit, integration, validation, and system testing
Validation planning

X X X

Table 3-59: SE6. Software Validation topics covered in programming-first CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 107

Topic IF CS1-CS2 OF CS1-CS2 FF CS1-CS2

PF1. Basic syntax and semantics of a higher-level
language

PF1. Variables, types, expressions, and assignment

PF1. Smple1/O

PF1. Conditional and iterative control structures

PF1. Functions and parameter passing

PF2. Problem-solving strategies

PF2. Therole of algorithms in the problem-solving
process

PF2. Implementation strategies for algorithms

PF2. Debugging strategies

PF2. The concept and properties of algorithms

PF3. Primitive types

PF3. Arrays

XXX XXX XX} XXX X

PF3. Strings and string processing

X (useof, not
implementation)

XXX X[XXX X X
XXX XX X[XXX X X

PF3. Linked structures

PF3. Implementation strategies for stacks, queues,
and hash tables

X (use of, not
implementation)

>
>

PF3. Implementation strategies for graphs and
trees

>
>

X (introduction)

PF3. Strategies for choosing the right data
structure

PF4. The concept of recursion

PF4. Recursive mathematical functions

PF4. Simple recursive procedures

PFA4. Divide-and-conquer strategies

PF4. Recursive backtracking

XXX XXX X
XXX XXX X

PF4. Implementation of recursion

XXX XXX X X

AL1. Asymptotic analysis of upper and average
complexity bounds

X
X

X (BigO X (Big O

AL1. Big O, little o, omega, and theta notation only) only)

X (Big O only)

AL1. Standard complexity classes X X X

AL1. Empirical measurements of performance

AL3. Simple numerical algorithms

AL3. Sequential and binary search algorithms

AL3. Quadratic sorting agorithms (selection,
insertion)

X[XXX
X XXX
X XXX

AL3. O(N log N) sorting a gorithms (Quicksort,
heapsort, mergesort)

AL3. Binary search trees

ALDS. Tractable and intractable problems

XX X[X
XX X[X
XX X[X

ALS5. Uncomputable functions

108 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

PL1. History of programming languages X X X
PL1. The effects of scale on programming X X X
methodol ogy
PL2. The concept of avirtual machine X X X
PL2. Hierarchy of virtual machines X X X
PL2. Intermediate languages X X X
PL2. Security issues arising from running code on

. . X X X
an alien machine
PL4. The conception of types as a set of values X X X
with together a set of operations
PL4. Declaration models (binding, visibility,

o X X X

scope, and lifetime)
PL4. Overview of type-checking X X X
PL4. Garbage collection X X X
PL5. Procedures, functions, and iterators as X X X

abstraction mechanisms

PL5. Parameterization mechanisms (reference vs.
value)

PL5. Activation records and storage management

PL5. Type parameters and parameterized types

PL5. Modulesin programming languages

PL6. Object-oriented design

PL6. Encapsulation and information-hiding

PL6. Separation of behavior and implementation

PL6. Classes and subclasses

PL6. Inheritance (overriding, dynamic dispatch)

PL6. Polymorphism (subtype polymorphism vs.
inheritance)

PL6. Class hierarchies

PL6. Collection classes and iteration protocols

SP1. Prehistory — the world before 1946

SP1. History of computer hardware, software,
networking

SP1. Pioneers of computing

SE1. Fundamental design concepts and principles

SE1. Design patterns

SE1. Object-oriented analysis and design

SE2. API programming

SE2. Class browsers and related tools

SE2. Programming by example

XXX XX XXX X [X[X]|X] X [X]X[|X|[X[X]X]|X[X] X
XXX XX XXX X [X[X]|X] X [X]X[|X[X[X]|X]|X[X] X
XXX XX XXX X [X[X]|X] X [X]X[|X[X[X]|X]|X[X] X

SE2. Debugging in the API environment

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 109
SE3. Programming environments X X X
SE3. Requirements analysis and design modeling X X (Modeling X (Modeling
tools tools) tools)
SE3. Testing tools X X X
SE5. Requirements elicitation X X X
SES5. Functional and nonfunctional regquirements X X X
SE6._T%ti ng fundamentals, ir_1c| uding test plan X X X
creation and test case generation
SE6. Object-oriented testing X X X

Table 3-60: Topics covered by all three programming-first approachesto CS1-CS2
Topic IFCS1-CS2 | OF CS1-CS2 | FF CS1-Cs2
PF1. Structured decomposition X X
PF3. Records X X
PF3. Pointers and references X X
AL 3. Hash tables, including collision-avoidance
strategies X X
SE1. Structured design X X
Table 3-61: Topics covered by all two of three programming-first approachesto CS1-CS2
Topic IF CS1-CS2 OF CS1-CS2 FF CS1-CS2
PF3. Data representation in memory X
PF3. Static, stack, and heap allocation X
PF3. Runtime storage management X
SE3. Configuration management tools X
SE3. Tool integration mechanisms X
SE1. Design for reuse X

AL 3. Representations of graphs (adjacency list,
adjacency matrix)

X

Table 3-62: Topics covered by one of the three programming-first approachesto CS1-CS2

110 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

Topic

AL1. Identifying differences among best, average, and worst case behaviors
AL1. Time and space tradeoffs in algorithms

AL 1. Using recurrence relations to analyze recursive al gorithms
AL3. Depth- and breadth-first traversals

AL 3. Shortest-path algorithms (Dijkstra’s and Floyd’ s algorithms)
AL3. Transitive closure (Floyd’ s algorithm)

AL3. Minimum spanning tree (Prim’s and Kruskal’ s algorithms
AL3. Topological sort

ALDS. Finite-state machines

ALDS. Context-free grammars

ALS. The halting problem

ALS. Implications of uncomputability

PL6. Interna representations of objects and method tables

SE1. Software architecture

SE1. Component-level design

SE2. Introduction to component-based computing

SES5. Requirements analysis modeling techniques

SES. Prototyping

SES. Basic concepts of formal specification techniques

SE6. Validation planning

SE6. Black-box and white-box testing techniques

SE6. Unit, integration, validation, and system testing

SEB6. Inspections

Table 3-63: Topics covered by none of the three programming-first approachesto CS1-CS2

3.2.7 Comparison of the Current Intersection to CC2001 Chapter 7

One more comparison must be made in order to ensure that the intersection is
complete and aligned with the goals of CC2001. Consider again Table 3-2, which
describes the knowledge units and topics that are covered by all six of the introductory
tracks. It isimportant for usto compare the results just achieved with the guidelines
presented in thistable. Thiswill help uncover any omissions and also may help to
confirm some of the decisions made during the more in-depth analysis of the intersection

topics described in 83.2.5-3.2.6.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 111

It isimportant to remember that because Table 3-2 from CC2001 represents
knowledge units covered by all six introductory tracks, both programming-first and non-
programming-first, there will most likely be topics included in the intersection presented
in the previous section that are not included in the table. Topics that are inherently more
programmatic in nature may be covered extensively in the programming-first approaches,
but may not be covered at al in the non-programming-first approaches. One such
example of thisisdiscussion of data structures such as stacks, queues, trees, and graphs.
These topics are not included in the table, but are included in the intersection as part of

the topical coverage.

First, Table 3-2 presents knowledge units for which all topics must be covered. These
include:

» DS1. Functions, relations, and sets

» DS2. Basiclogic

» D$A. Basics of counting

* DSG. Discrete probability

* PF1. Fundamental programming constructs
* PFA. Recursion

e PL1. Overview of programming languages
e PL2. Virtual machines

e PLA4. Declarations and types

e PL5. Abstraction mechanisms

e SP1. Higtory of computing

One notices right away that DS1, DS2, D4, and DS6 do not appear anywhere in the
analysis of the programming-first approaches. Thiswould at first seem to indicate that
the intersection just created istotally incorrect. However, looking at all three of the

introductory tracks and their suggested syllabi, none mention any of DS1, DS2, D4, or

112 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

DS6. Therefore, the question that comes to mind is, how can these topics be included by
CC2001 as covered by al six of theintroductory tracks? Looking back to Chapter 7 of
CC2001, the answer can be found in section 7.4, Integrating discrete mathematics into the

introductory curriculum.

CC2001 advocates exposure to the concepts of discrete mathematics early, possibly in
thefirst year of study. CC2001 indicates two possible waysto achieve thisgoal. The
first is a separate discrete mathematics course taken concurrently with the introductory
sequence of courses. The second is integrating the discrete mathematics into the
introductory sequence, which is demonstrated in the three-semester model for the

Breadth-first approach.

The analysis performed was on programming-first courses that must be
complemented by a separate discrete mathematics course during the first year. The topics
indicated in Table 3-2 from the discrete structures knowledge area would be covered in
that course. The rest of the knowledge unitsindicated are covered in their entirety by the

intersection that was created.

Table 3-2 also presents knowledge units for which only certain topics should be
covered. Considering each one individually, notice that the intersection presented gives

proper coverage to these areas.

* DS3. Proof techniques: The structure of formal proofs; proof techniques;
direct, counterexample, contraposition, contradiction; mathematical induction

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 113

For DS3, there is the same problem as with the other knowledge units from the
Discrete Structures area. Since these topics would also be a part of afirst-year discrete

mathematics course, they will not be included in the intersection.

* PF2. Algorithms and problem-solving: Problem solving strategies; the role of
algorithms in the problem-solving process; the concept and properties of
algorithms; debugging strategies

In Table 3-43, al of these topics are indicated as part of the intersection. This subset
of topics aso includes the topic of the role of algorithms in the problem-solving process,
which was initially omitted from some of the approaches. This comparison of our current
intersection with CC2001 further validates the decision to make that topic part of the

intersection.

* PF3. Fundamental data structures: Primitive types; arrays, records; strings
and string processing; data representation in memory; static, stack, and heap
allocation; runtime storage management; pointers and references; linked
structures

In Table 3-44, the topics that are indicated as part of the intersection do not coincide
with the list of topics given here. Missing from objects-first are the topics of: records;
data representation in memory; static, stack, and heap allocation; runtime storage
management; pointers and references. Missing from functional-first are the topics of:
data representation in memory; static, stack, and heap allocation; runtime storage
management. It isnot unusual for these topics to be found in an introductory sequence,
and in fact are indicated to be a part of the imperative-first courses. This comparison

with CC2001 Chapter 7 indicates that these topics should be included.

114 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

With thislist of topics for this knowledge unit, support is given for the decisions that
were made in 83.2.5.6 about the inclusion of primitive types and linked structuresin the

intersection.

Table 3-64 gives the finalized picture of the topics that should be included in the

intersection for the PF3 knowledge unit based upon all of the information available to us.

PF3. Fundamental Data Structures IF CS1-CS2 OF CS1-CS2 FF CS1-CS2
Primitive types X X X
Arrays X X X
Records X X X
Strings and string processing X X X
Data representation in memory X X X
Static, stack, and heap allocation X X X
Runtime storage management X X X
Pointers and references X X X
Linked structures X : X (use of, n_ot X
implementation)
Implementation strategies for stacks, queues, X X (use of, not X
and hash tables implementation)
Implementation strategies for graphs and trees X X (introduction) X
Strategies for choosing the right data structure X X X

Table 3-64: PF3. Fundamental Data Structurestopics covered in programming-first CS1-CS2

* ALL Basicagorithmic analysis. Big O notation; standard complexity
classes; empirical measurements of performance; time and space tradeoffsin
algorithms

In Table 3-46, al but the topic of time and space tradeoffs in algorithms are indicated
asincluded in the intersection. In 83.2.5.4, it was argued that all three approaches should
have the same coverage for this knowledge unit and the topic list from Table 3-2 supports
thisidea. However, it has aso included the topic of time and space tradeoffsin
algorithms, which was not originally included in the intersection. For completeness and

in following with the suggested guidelines given in this figure, that topic will be included.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 115

Table 3-65 shows the updated listing of topics for this knowledge unit based upon all

of the analysis of the CC2001 document.

AL1. Basic algorithmic analysis IFCSI-CS2 | OFCSI-CS2 | FFCS1-CS2
Asymptotic analysis of upper and average X X X
complexity bounds

Big O, little 0, omega, and theta notation X éﬁl')%o X éﬁ:g)o X éﬁ:g)o
Empirical measurements of performance X X X
Standard complexity classes X X X
Time and space tradeoffs in algorithms X X X

Identifying differences among best, average, and
worst case behaviors

Using recurrence relations to analyze recursive
algorithms

Table 3-65:AL 1. Basic Algorithmic Analysistopics covered in programming-first CS1-CS2

* ALS3. Fundamental computing algorithms; Simple numerical agorithms;
sequential and binary search algorithms; quadratic and O(N log N) sorting
algorithms; hashing; binary search trees

In Table 3-47, al of these topics are indicated as being part of the intersection except

for hashing, which is not indicated in the functional-first approach. This helps once again

strengthen the arguments presented in 8§3.2.5.6 for the inclusion of additional topics that

were not clear from the initial “shallow” reading of the syllabus descriptions. Originaly,

hashing was not included in the functional-first topics because there is no indication of

hashing in the sample syllabi.

However, given the intent of the introductory courses to discuss hashing, it will be

included in the intersection and Table 3-66 shows the finished intersection for this

knowledge unit.

116 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

AL3. Fundamental computing algorithms IFCSL- | OFCSL- | FFCSl-

CSs2 CSs2 CSs2
Simple numerical algorithms X X X
Sequential and binary search algorithms X X X
Quadratic sorting al gorithms (selection, insertion) X X X
O(N log N) sorting algorithms (Quicksort, heapsort, mergesort) X X X
Hash tables, including collision-avoidance strategies X X X
Binary search trees X X X
Representations of graphs (adjacency list, adjacency matrix) X

Depth- and breadth-first traversals

Shortest-path algorithms (Dijkstra’ s and Floyd’ s algorithms)
Transitive closure (Floyd’ s algorithm)

Minimum spanning tree (Prim’s and Kruskal’s algorithms)
Topological sort

Table 3-66: AL 3. Fundamental Computing Algorithmstopics covered in programming-first CS1-
Cs2

* ARL Digita logic and digital systems: Logic gates;, logic expressions
This knowledge unit is not covered at al in any of the programming-first introductory
sequences. It isnot part of the Discrete Structures knowledge area; however, sample
syllabi for the discrete mathematics course, found in Appendix B of CC2001, shows this
knowledge unit as part of the coverage. Therefore, these topics will not beincluded in

the intersection, but left for inclusion in such a discrete mathematics course.

* PL6. Object-oriented programming: Object-oriented design; encapsulation
and information-hiding; separation of behavior and implementation; classes,
subclasses, and inheritance; polymorphism; class hierarchies

Table 3-53 shows that al of the topics presented for this knowledge unit are included
in the intersection. Also note that the topic of internal representations of class and
method tables is not presented in thislisting. This supports the decision to leave it out of

the intersection. No changes are required of the topic list for this knowledge unit.

» SE1. Software design: Fundamental design concepts and principles; object-
oriented analysis and design; design for reuse

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 117

In Table 3-55, the topics indicated for the intersection do not include design for reuse.
It was argued in 83.2.5.6 that perhaps the reason thistopic is not given as part of some of
the approachesis because it is not as important to non-object-oriented programming.
Clearly, theinclusion of thistopic for all introductory sequences weakens this point, and
gives the indication that thistopic should be in the intersection. This change in topic

inclusionisgivenin Table 3-67.

SE1. Software design IFCS1-CS2 | OF CS1-CS2 | FF CS1-CS2
Design for reuse

Design patterns

Fundamental design concepts and principles
Object-oriented analysis and design
Structured design

Component-level design

Software architecture

XXX [X

XXX XX
XX XXX

Table 3-67: SE1. Software Design topics covered in programming-first CS1-CS2

e SE2.Using APIs: API programming; class browsers and related tools;
programming by example; debugging in the API environment

Table 3-56 indicates that all of the topics presented for this knowledge unit are
included in the intersection. Theinclusion of al of these topics was argued for in

§3.2.5.5 and this comparison reaffirms that inclusion.

» SE3. Software tools and environments: Programming environments; testing
tools

Table 3-56 shows that these topics are included in the intersection. In §3.2.5.4, it was
argued that testing tools as well as modeling tools should be included. While modeling

tools are not included in thislist, they still seem appropriate for the programming-first

118 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

approaches to the introductory sequence and there is no need to change the topics for this

knowledge unit.

» SEb. Software requirements and specifications: Importance of specification in
the software process

Thistopic isnot onethat islisted as atopic for this knowledge unit. However, this
explanation does seem to coincide with the argument for how the topicsin this section
should be presented that was given in section 1.2.3.7. This discrepancy in language
makes it hard to determine the exact topics, but since it does not indicate an absence of an
important topic to the introductory sequence, the current topics will remain aslisted in

Table 3-57.

» SEG6. Software validation: Testing fundamentals; test case generation
Table 3-58, shows an inclusion of these topics as well as the additional topic of

object-oriented testing. These topics will remain unchanged.

3.28 Topicsincluded in some, but not All Programming-first
Approaches

Only afew topics are covered by only one or two of the introductory sequences.
Table 3-68 presents three topics that are covered by imperative-first and functional-first,
but not objects-first. No topics are covered by imperative-first and objects-first only, or

by objects-first and functional-first only.

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 119

PF3. Fundamental Data Structures
* Implementation of stacks, queues, and hash tables
* Implementation of trees and graphs

SE1. Software Design
* Structured design

Table 3-68: Topics covered only by imperative-first and functional-first CS1 & CS2

Based on these findings, it is necessary to re-examine these two units to see if these

topics should actually be included in the final intersection of topics.

For PF3, it seems|logical that implementation of data structures would be presented in
aCS2 course, even in the objects-first style. In the discussion of these data structuresin a

course, the implementation will be discussed at some level.

Perhaps it is the case that for objects-first, the focus of programming assignments for
the course is not to implement the data structures, but rather use them in the large-scale
programming projects that the sample curriculum suggests. However, this does not
preclude an instructor from introducing the implementation and discussing the
implementation issues with the students. Therefore, thistopic will be included in the

final intersection of topics, and these changes are reflected in Table 3-69.

120 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

PF3. Fundamental Data Structures IFCCészl O|:CCS:§1 FFCCS:§1
Primitive types X X X
Arrays X X X
Records X X X
Strings and string processing X X X
Data representation in memory X X X
Static, stack, and heap allocation X X X
Runtime storage management X X X
Pointers and references X X X
Linked structures X X X
Implementation strategies for stacks, queues, and hash tables X X X
Implementation strategies for graphs and trees X X X
Strategies for choosing the right data structure X X

X
Table 3-69: PF3. Fundamental Data Structurestopics covered in programming-first CS1-CS2

For SE1, the topic of structured design isincluded in two of the three courses. Since
the focus of the objects-first curriculum is object-oriented design, it is reasonable to
assume that any other types of design would not be discussed. However, one could view
object-oriented design as atype of structured design. It certainly provides the student
with astructure for their programs and prevents the so-called “ spaghetti code” problem.

Therefore, it will be included in the final intersection of topics; this change isreflected in

Table 3-70.
SE1. Software design IFCS1-CS2 | OF CS1-CS2 | FF CS1-CS2
Design for reuse X X X
Design patterns

Fundamental design concepts and principles
Object-oriented analysis and design
Structured design

Component-level design

Software architecture

X | X | X | X
X | X | X | X
X | X | X | X

Table 3-70: SE1. Software Design topics covered in programming-first CS1-CS2

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME 121

Table 3-71 presents asingle topic that is only covered in imperatives-first and Table
3-72 presents asingle topic that is only covered in functional-first. There are no topics
that are only covered by the objects-first approach. Since these topics are not represented
in all three introductory sequences, they are not included in the final set of topics of the

intersection of the three programming-first approaches.

SE3. Softwar e Tools and Environments
* Requirements analysis

Table 3-71: Topics covered only by imperative-first CS1 & CS2

AL 3. Fundamental Computing Algorithms
* Representations of graphs (adjacency list, adjacency matrix)

Table 3-72: Topics covered only by functional-first CS1 & CS2

3.3 Conclusion

This chapter began by discussing the overall structure and content of the CC2001
document and has finished by creating aformal intersection of topics for the
programming-first approaches to the introductory curriculum. Thislist of topicsis made
up from the topics in eighteen knowledge units. These knowledge units are presented in
83.2.3.1. Theformal listing of topicsis presented in Tables 3-42, 3-43, 3-45, 3-48, 3-49,

3-50, 3-51, 3-52, 3-53, 3-54, 3-56, 3-57, 3-58, 3-59, 3-65, 3-66, 3-69, and 3-70.

Severa observations can be made about the consistency of the language of the
CC2001 document. The names of knowledge areas and knowledge units are consistently
used throughout the document. However, when one reaches the topic coverage level, the

consistency begins to break down. Thisis especially evident when reading the sample

122 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

syllabi for the introductory courses that are given in CC2001's Appendix B. Most
notably, the objects-first syllabi did not use the correct names of the topics for the
knowledge units. This made it difficult to decide which topic areas to include. Also, in
some cases, entire sets of topics were not given asufficient level of detail, but smply
lumped under the category of the knowledge unit name. One was left to assume that this
meant all of the topics would be covered. There were also several instances where entire

sets of topics were simply left out of the course descriptions.

Thelist of common topics that was created forms the basis for the work on the
assessment instrument. Thislist of topics covered in the CS1-CS2 sequence by all three
programming-first approachesis presented in Table 3-73. Thislist represents the results
of combining information gathered from the syllabus topic descriptions, the number of
knowledge units covered, the amount of time devoted to each knowledge unit, the
information in Chapter 7 of CC2001, and topics that were included in two of the three

approaches.

PF1. Fundamental Programming Constructs

Basic syntax and semantics of a higher-level language
Variables, types, expressions, and assignment
Simplel/O

Conditional and iterative control structures

Functions and parameter passing

Structured decomposition

PF2. Algorithms and Problem-Solving
* Problem-solving strategies
Therole of agorithmsin the problem-solving process
Implementation strategies for algorithms
Debugging strategies
The concept and properties of algorithms

PF3. Fundamental Data Structures

CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

123

e Primitivetypes

e Arrays

* Records

» Stringsand string processing

» Datarepresentation in memory

o Static, stack, and heap alocation
* Runtime storage management

* Pointers and references

* Linked structures

e Stacks, queues, and hash maps

e Graphsand trees

« Strategiesfor choosing the right data structure

PF4. Recursion
e The concept of recursion
* Recursive mathematical functions
e Simple recursive procedures
» Divide-and-conquer strategies
* Recursive backtracking
* Implementation of recursion

AL 1. Basic Algorithmic Analysis
» Asymptotic analysis of upper and average complexity bounds
* Big O notation
* Standard complexity classes
e Empirica measurements of performance
« Time and space tradeoffs in algorithms

AL 3. Fundamental Computing Algorithms
e Simple numerical algorithms
e Sequentia and binary search algorithms
e Quadratic sorting algorithms (selection, insertion)
* O(N log N) sorting algorithms (Quicksort, heapsort, mergesort)
« Hashtables, including collision avoidance strategies
* Binary search trees

ALS5. Basic Computability
» Tractable and intractable problems
» Uncomputable functions

PL 1. Overview of programming languages
* History of programming languages
» Brief survey of programming paradigms: Procedural languages, Object-oriented languages,
Functional languages, Declarative, non-algorithmic languages, Scripting languages
» The effects of scale on programming methodology

PL2. Virtual Machines
* Theconcept of avirtual machine
* Hierarchy of virtual machines
¢ Intermediate languages
e Security issues arising from running code on alien machine

PL 4. Declarations and Types

124 CHAPTER 3 ANALYS SOF THE CC2001 COMPUTER SCIENCE VOLUME

* The conception of types as a set of values together with a set of operations
e Declaration models (binding, visibility, scope, and lifetime)

e Overview of type checking

» Garbage collection

PL5. Abstraction M echanisms
» Procedures, functions, and iterators as abstraction mechanisms
» Parameterization mechanisms (reference vs. value)
» Activation records and storage management
» Type parameters and parameterized types
* Modulesin programming languages

PL 6. Object-oriented Programming
» Object-oriented design
» Encapsulation and information-hiding
e Separation of behavior and implementation
» Classes and subclasses
* Inheritance (overriding, dynamic dispatch)
e Polymorphism (subtype polymorphism vs. inheritance)
» Classhierarchies
* Collection classes and iteration protocols

SP1. History of Computing
* Prehistory — the world before 1946
» History of computer hardware, software, networking
* Pioneers of computing

SE1. Software design
* Fundamental design concepts and principles
» Design patterns
» Structured design
» Object-oriented analysis and design
e Designfor reuse

SE2. Using APIs
e APl programming
» Classbrowsers and related tools
e Programming by example
« Debugging inthe API environment

SE3. Software Tools and Environments
e Programming environments
e Design modeling tools
» Tedting tools

SES5. Softwar e Requirements and Specifications
¢ Requirements elicitation
* Functional and nonfunctional requirements

SE6. Software Validation
» Testing fundamentals, including test plan creation and test case generation
* Object-oriented testing

Table 3-73: Final List of Intersection Topics

Chapter 4

Refining the Topic List

4.1 Introduction

Looking at Table 3-73 showing the topics included in the intersection, one sees that
the amount of material covered by the introductory sequence is quite substantial. More
than 75 topics are in the intersection, several of them encompassing multiple sub-topics.

This number istoo large for careful evaluation by one examination.

In this chapter, we will eliminate some of the topicsin order to create a more
manageabl e assessment instrument. During this analysis, if atopicis covered extensively
in the introductory sequence, we keep it as part of the topics to be used to create the
assessment instrument. If atopicis covered in the introductory sequence, but also
covered, possibly in more depth, in an upper-level course, it is eliminated. Becausethis
assessment focuses on the programming-first approaches to the introductory sequence,
topics that are more closely related to programming and program design issues are given
higher priority than those issues that are not as closely related. The result isasmaller set

of topics that is more manageable for testing by an assessment instrument.

125

126 CHAPTER 4 REFINING THE TOPIC LIST

Learning objectives were also considered among criteriafor eliminating topics. They

will be discussed in more detail in Chapter 5.

4.2 Topics Removed

The topics discussed in this section are those that were removed from the topic list for
the assessment instrument. It isimportant that those interested in the introductory
computer science sequence understand that these topics are not irrelevant to the
curriculum nor should they be removed from the course content in the first year; rather,
student’ s abilities in these areas will not be assessed by this instrument. If assessment of
these issues is needed, it must be gathered using other methods. Knowledge units that

did not have topics removed are not discussed in this section.

For some of the topics, the decision to remove them from the assessment was not an
easy one. All of thetopics in the intersection are topics that should be covered in any
introductory sequence. However, some of the topics present challenges to assessment by
exam. Among them are topics that deal with the process of design or debugging. These
topics are not easy to assess with atraditional time-limited paper-and-pencil exam (which
thisexamis). Therefore, topicsthat fell into this category were generally eliminated,
even though their importance to student understanding cannot be overstated. This exam
does not assess every possible topic in an introductory sequence, so instructors will need
to supplement this exam with assessment throughout the introductory sequence that will

show student proficiency with some of the missing topics. In the next sections, we will

CHAPTER 4 REFINING THE TOPIC LIST 127

look at the knowledge unit topics that will not be assessed by our exam organized by

reason for their elimination from this assessment instrument.

421 TopicsEliminated because of Time Constraints

There are many topics in the original intersection list that require a significant amount
of questionsto be asked in order to discern a student’ s understanding or would require
questions that can take a considerable amount of thinking and preparation before a
student can effectively answer. The proper amount of time that needs to be given for
exploration of atopic as well as synthesis of a solution can be achieved in many ways.

Some suggestions and ideas are givenin 84.2.1.1 -4.2.1.3.

These topics are further broken down into three categories. topics assessing the
process of programming and program development, topics ng student
understanding of concepts underlying programming and program development, and
topics concerned with students exploring programming through the use of advanced

programming techniques, algorithm analysis, or development tools and environments.

4211 Programming process

These topics deal primarily with the process of creating a program or the process of

designing a solution to a particular problem:

e Structured decomposition (from PF1)

» Problem-solving strategies (from PF2)

» Implementation strategies for algorithms (from PF2)
» Debugging strategies (from PF2)

128 CHAPTER 4 REFINING THE TOPIC LIST

* Object-oriented design (from PL6)

» Fundamental design concepts and principles (from SE1)

» Design patterns (from SE1)

» Object-oriented analysis and design (from SE1)

» APl programming (from SE2)

* Programming by example (from SE2)

» Debugging in the API environment (from SE2)

» Testing fundamentals, including test plan creation and test case generation

(from SE6)

* Object-oriented testing (from SE6)

Assessing student knowledge in any of the above areas can be done in alaboratory
setting. Students can obviously demonstrate their abilities in these areas through the
completion of programming projects requiring them to design and implement a solution.
These programs then can be assessed on design characteristics as well as correct
functionality so that a student can demonstrate understanding of design techniques and
strategies. Thiswill also alow problems of sufficient complexity to be given to the

student to allow them to use more sophisticated design techniques without the time

constraints this exam will have.

Another possible way to assess the design abilities of a student is assessment through
controlled observation. An assessor could be brought in to watch a student construct a
solution to a problem. The student could be asked to describe the process they are using,
or the assessor could ask questions about the design decisions the student has made while
they have devel oped the solution to the problem. The assessor can then assign a grade to
the student based on techniques used for solving a problem, rather than the actual

solution.

CHAPTER 4 REFINING THE TOPIC LIST 129

One could argue, however, that these ideas will be tested in the assessment any time
that a student is asked to generate a piece of code. Thisin many waysistrue. However,
the questions that ask the student to create code to solve a particular problem also assess
their ability to create a solution for that problem, not their general problem-solving or
design abilities. Therefore, it will not be claimed that this assessment demonstrates a
student’ s ability to problem solve in general, or that a student is competent in any
particular design technique, but rather that the student has demonstrated the ability to

solve problems within a specific topic areain this discipline.

Another argument that could be raised about the exclusion of these topicsis that when
oneis dealing with languages as complex as many of the popular CS1 languages, the idea
of the API (Application Programmers Interface™) and its place in learning a new
language cannot be overemphasized. Since it would be unreasonable to assume that
students memorize all the methods from the multitude of classes that could be referenced
by this exam, it is possible that an API will be used as a means to provide students

supporting information about code examples used in the exam.

However, the API is only being used as atool to help the studentsin solving some
other problem. The notable example from the exam that was created for this dissertation
isthe use of the API for the String classin Java. Thisclassisfairly large and provides

many useful methods that can be used by a student for string processing tasks. String

4 Similar to the idea of alanguage reference manual, an API provides a developer with information about a
language and the libraries and library methods contained withinit. APIs can aso be provided for libraries
and packages devel oped as external projects in alanguage to help developers learn about its features.

130 CHAPTER 4 REFINING THE TOPIC LIST

processing is atopic that isincluded on the assessment, and giving the student access to
the API for the String classis away to ensure that the student has access to methods that
will help them process strings and not have to be concerned with memorizing names of
methods before the exam. See Chapter 6 for an in-depth discussion of specific exam
guestions. This use of APIsisnot clearly indicated by the topics given in the SE2

knowledge unit, so the topics are not included as formal topics for exam creation.

Last, an argument could be raised against the exclusion of software testing from the
exam. Testing can obviously be assessed using laboratory exercises where students are
asked to test code or create test cases for code they have written. However, students
could be asked to do the same thing on an exam as well, even if the testing can never be
executed. There are two reasons that this method of assessment was not used in this
exam. Thefirst isatime concern. Asking students to create proper test cases for a
problem will require that they have studied a problem for at least some time. The second
isaconcern over coverage of testing methodology. There are several testing
methodologies available, and an instructor is free to choose whatever methodol ogy fits
more appropriately into their course. Therefore, it could be the case that test cases or test
plans were never formally discussed, and asking the student to write one would not be
feasible due to lack of experience with that type of testing. It isfor both of these reasons

that the topics have not been included on this assessment.

CHAPTER 4 REFINING THE TOPIC LIST 131

4212 Conceptsunderlying the programming process

These topics are still concerned with the process of creating a program or designing a
solution, but are not necessarily issues of process, rather, they are concepts and ideas that

underlie the actual process of programming. These topics are:

» Therole of algorithmsin the problem-solving process (from PF2)

» The concept and properties of agorithms (from PF2)

» Time and space tradeoffs in algorithms (from AL 1)

» Theeffects of scale on programming methodology (from PL1)

* Procedures, functions, and iterators as abstraction mechanisms (from PL5)
» Separation of behavior and implementation (from PL6)

» Design for reuse (from SE1)

These topics require a student to possess not only an understanding of the process of
programming and design, but also to understand the “why” of those processes. Asking a
guestion about a“why” forces an explanation. Explanations must be given in the form of
natural language and usually involve one or more sentences and time for the answerer to
prepare their thoughts about the subject. This pushes questions of “why” into a category
of discussion topics or essays. All of this requires an amount of time not available in this

exam.

Assessment of these topics could be achieved through a graded and guided in-class
discussion or debate about practices of good design and design ideas, or even through

assigned essays or position papers about these ideas. Both methods would allow students

132 CHAPTER 4 REFINING THE TOPIC LIST

to express themselves free of the time pressure this particular exam and would aso allow

students time to reflect on these ideas and their importance.

4.21.3 Exploring different aspects of programming

These topics are topics that are related to programming activities, most specifically
certain kinds of algorithms or algorithm analysis that could be performed at the
introductory level. Also included are topics dealing with programming environments or

tools. Thesetopics are:

* Recursive backtracking (from PF4)

» Empirical measurements of performance (from AL1)

» Callision avoidance strategies for hash tables (from AL3)
» Class browsers and related tools (from SE2)

* Programming environments (from SE3)

» Design modeling tools (from SE3)

» Testing tools (from SE3)

The first three topics are topics that deal with specific algorithms or techniques. For a
student to demonstrate an understanding of recursive backtracking, a problem of
sufficient size must be given to the student for them to solve using this method.

However, problems of this size will require much time in the design stage of the problem-
solving process. The topic of empirical measurements could be better assessed as a
laboratory exercise that engages the students in determining the empirical measurement
of the runtime of algorithms and asks them to compare that to their knowledge of the Big-
O running time. The topic of collision avoidance strategies for hash tables contains

within it numerous strategies for collision avoidance not all of which would be covered

CHAPTER 4 REFINING THE TOPIC LIST 133

by all instructors. Therefore, instructors are encouraged to expose the students to various
collision avoidance strategies and compare them in some form of laboratory or other

programming exercise.

The final four topics deal with tools and environments. Since al instructors are free
to use whatever environment and tools they wish, it isimpractical to try to assess students
on their abilities with these tools in a uniform way. Assessment of these skills must once

again be done vialaboratory exercisesin individual courses.

422 TopicsEliminated because of Degper Coveragein Advanced
Courses

Many topicsin the original intersection list will be discussed at the introductory level
to some degree, but will be discussed to a greater degree in subsequent coursesin the
curriculum. Dueto institutional differences, the depth at which many of these topics are
covered can vary. Therefore, finding an adequate level to assess these topics poses a
great challenge. Therefore, it isleft to individual instructors to assess these topicsin
homework, problem sets, or in-class examinations to the level at which the topics were
covered and to subsequent courses to assess when a more thorough treatment of the topic
isundertaken. These topics are either more advanced programming languages topics,
systems topics, theory of computation topics, or more advanced software engineering

topics. Thesetopicsare:

o Static, stack, and heap allocation (from PF3)
* Runtime storage management (from PF3)

134 CHAPTER 4 REFINING THE TOPIC LIST

* Recursive mathematical functions (from PF4)

» Tractable and intractable problems (from AL5)

» Uncomputable functions (from AL5)

* The concept of avirtua machine (from PL2)

» Hierarchy of virtual machines (from PL2)

* Intermediate languages (from PL2)

» Security issues arising from running code on aien machine (from PL2)
» Garbage collection (from PL4)

» Activation records and storage management (from PL5)
* Modules in programming languages (from PL5)

* Requirements elicitation (from SE5)

» Functional and nonfunctional requirements (from SE5)

423 TopicsEliminated because of Difficulty in Determining
Material Coverage

Many topicsin the original intersection list are very broad overviews of topics or
topics that involve history of the discipline. These topics allow an instructor to have a
large amount of freedom in what will be covered within particular topic and thus pose a
serious problem for this assessment instrument. Since there are no explicitly given
standards within these areas, it is almost impossible to ensure uniform coverage across
ingtitutions. Therefore, these topics will not be included in the assessment. These topics
are:

» History of programming languages (from PL1)

» Brief survey of programming paradigms. Procedural languages, Object-oriented
languages, Functional languages, Declarative, non-algorithmic languages,
Scripting languages (from PL1)

* Prehistory — the world before 1946 (from SP1)

» History of computer hardware, software, networking (from SP1)
» Pioneers of computing (from SP1)

CHAPTER 4 REFINING THE TOPIC LIST 135

The type of assessment of these topics will need to be determined in alarge part by
the individual instructors based on what depth and type of coverage these topics are
given. Because of their general, broad nature, it is even difficult to give good
suggestions. However, the idea of essays or exploratory research in the areas of history is

an option that instructors may wish to pursue.

424 Records

The topic of records has presented a unique set of challenges. Records are aclear
programming-language-specific construct, and, because not all languages support
records, choice of language would greatly determine how assessment could proceed with

this topic.

However, records also represent the idea of composite types in a more general sense,
without the compulsion to delve into object-oriented ideas. Therefore, imperatives-first
courses would most definitely discuss them in the introductory sequence. Since objects
are simply another type of composite type, the concept of composite typesis present in
all of theintroductory approaches being studied. Due to thisfact and our time
constraints, the topic of records proper is not being included in this assessment; however,

the notion of composite types will be present with any question that involves objects.

136 CHAPTER 4 REFINING THE TOPIC LIST
4.3 Topics Remaining

After the elimination of the topics discussed above, the topics that are left present a
tighter picture of topical coverage of this assessment instrument. This new list of topics

ispresented in Table 4-1: Revised List of Topics.

4.4 Conclusion

It is most important to reiterate that the intent of this chapter isto make the
assessment instrument easier to construct and to provide a picture of the common core
material to all programming-first CS1-CS1 courses, not to imply that the topics
eliminated should not be covered or assessed in the introductory sequence. For many of
the eliminated topics, aternative suggestions for assessment were given. As stated
before, it is most important not to consider this assessment instrument as the only form of
assessment applicable to studentsin the introductory sequence. Students should be
assessed in multiple ways to have a compl ete picture of student performancein the

introductory sequence

CHAPTER 4 REFINING THE TOPIC LIST 137

PF1. Fundamental Programming Constructs
e Basic syntax and semantics of a higher-level language
* Variables, types, expressions, and assignment
e Simplel/O
e Conditional and iterative control structures
e Functions and parameter passing
PF3. Fundamental Data Structures
e Primitive types
e Arrays
e Strings and string processing
e Datarepresentation in memory
* Pointers and references
e Linked structures
e Stacks, queues, and hash maps
e Graphsand trees
e Strategiesfor choosing the right data structure
PF4. Recursion
e The concept of recursion
e Simple recursive procedures
¢ Divide-and-conquer strategies
¢ Implementation of recursion
AL 1. Basic Algorithmic Analysis
¢ Asymptotic analysis of upper and average complexity bounds
¢ BigOnotation
e Standard complexity classes
AL 3. Fundamental Computing Algorithms
e Simple numerical algorithms
e Sequentia and binary search algorithms
e Quadratic sorting algorithms (selection, insertion)
¢ O(N log N) sorting algorithms (Quicksort, heapsort, mergesort)
e Hashtables
e Binary search trees
PL 4. Declarationsand Types
e Overview of type checking
¢ The conception of types as a set of values together with a set of operations
« Declaration models (binding, visibility, scope, and lifetime)
PL5. Abstraction M echanisms
e Parameterization mechanisms (reference vs. value)
e Type parameters and parameterized types
PL 6. Object-oriented Programming
« Encapsulation and information-hiding
e Classes and subclasses
¢ Inheritance (overriding, dynamic dispatch)
e Polymorphism (subtype polymorphism vs. inheritance)
e Classhierarchies
» Collection classes and iteration protocols

Table 4-1: Revised List of Topics

138

Chapter 5

L ear ning Objectives

5.1 Mining CC2001 for Learning Objectives

The previous two chapters analyzed the CC2001 document to produce a set of topics
satisfying two constraints. each topic is covered by all three programming-first
approaches to the introductory curriculum, and each lends itself to assessment by a paper
and pencil time-limited exam. We now turn to an examination of the learning objectives
that incorporate the topics from the intersection and that provide a context for what skills
students should have after completing instruction in one of the topics from the knowledge

units.

To some, this could seem to be the reverse of what istypically done to create a
course, where learning objectives are usually outlined before the course is created. While
thisis certainly true, the unique structure of the CC2001 led to some problems with
approaching the creation of the assessment in thisway. The sample syllabi and other
course materials are given with topical coverage, but not learning objective coverage.

Furthermore, the learning objectives are not given explicit associations with topics.

139

140 CHAPTER5 LEARNING OBJECTIVES

Therefore, looking at the list of learning objectives gives all learning objectives for that

knowledge unit, not learning objectives for each topic.

Hence, to avoid looking at learning objectives for knowledge units that would not be
included in the assessment at all and to further focus only for the appropriate learning
objectives for the topics that would actually appear on the exam, the learning objectives

were assembl ed after the list of topics was finalized.

Appendix A of CC2001, which includes the knowledge units and topics for each
knowledge unit, also lists learning objectives for each knowledge unit. This chapter will
show which of these learning objectives correlate with topicsin the intersection
previously defined. Learning objectives that correlate with topics that are not included in
the intersection are eliminated. Topicsthat arein the intersection that do not correlate
with a specific learning objective are noted, and new learning objectives are

recommended to fill these gaps.

5.2 Learning Objectives from Programming Fundamentals

521 PF1. Fundamental Programming Constructs L earning
Objectives

The following topics from this knowledge unit are included in the intersection:

» Basic syntax and semantics of a higher-level language
» Variables, types, expressions, and assignment

e Simplel/O

» Conditional and iterative control structures

CHAPTER 5 LEARNING OBJECTIVES 141

* Functions and parameter passing
The learning objectives given for this knowledge unit in Appendix A of CC2001 are
shown in left column of Table 5-1. All of the learning objectives for this knowledge unit
areincluded in our list of learning objectives for the assessment, except for 5, because

structured decomposition is not being included in the assessment.

The meaning of the phrase analyze and explain given in learning objective 1 above
and elsewhereis not clearly defined either in the learning objective or elsewherein
CC2001 itself. Therefore, the termswill be defined for our purposes as the ability to
describe the inputs, outputs, and the procedures used to compute the output from the
input. For example, given a program and an input, students should be able to state what
output would be produced, and articul ate in words the functionality of a particular piece
of code. Itisimportant to note that if the program contains more than one method or
function, students should be able to state what the responsibilities for each method or

function are.

In the second learning objective, the phrase modify and expand is also vague. The
definition of this phrase will be considered to be the ability of students, when given a
simple program, to add elements to it, to change its functionality based on directions

given, or to generalize it in some way.

Table 5-1 shows the original learning objectives for this knowledge unit and the
newly revised learning objectives for this knowledge unit; changes are indicated in

boldface.

142

CHAPTER5 LEARNING OBJECTIVES

Original Learning Objectives

Revised Learning Objectives

. Analyze and explain the behavior of smple
programs involving the fundamental
programming constructs covered by this unit.

. Modify and expand short programs that use
standard conditional and iterative control
structures and functions.

. Design, implement, test, and debug a program
that uses each of the following fundamental
programming constructs. basic computation,
simple 1/O, standard conditional and iterative
structures, and the definition of functions.

. Choose appropriate conditional and iteration
constructs for a given programming task.

. Apply the techniques of structured (functional)
decomposition to break a program into smaller
pieces.

. Describe the mechanics of parameter passing.

. For simple programs involving the fundamental

programming constructs covered by this unit,
describe the inputs, outputs, and the procedures
used to compute the output from the input.

. When given a short program that uses standard

conditional and iterative control structures and
functions, demonstrate the ability to add
elementsto it, to change its functionality based
on directions given, or to generalize in away
described by the directives.

. Design, implement, test, and debug a program

that uses each of the following fundamental
programming constructs. basic computation,
simple I/O, standard conditional and iterative
structures, and the definition of functions.

. Choose appropriate conditional and iteration

constructs for a given programming task.

. Describe the mechanics of parameter passing.

522

Table 5-1: Comparison of old and revised lear ning objectivesfor PF1. Fundamental Programming

Constructs

PF3. Fundamental Data Structures L ear ning Objectives

The following topics from this knowledge unit are included in the intersection:

* Primitivetypes
e Arrays

e Strings and string processing

» Datarepresentation in memory

* Pointers and references
e Linked structures

» Stacks, queues, and hash tables

* Graphsand trees

» Strategiesfor choosing the right data structure

The learning objectives given for this knowledge unit in Appendix A of CC2001 are

shown in the left column of Table 5-2. The only learning objective that will not be

CHAPTER 5 LEARNING OBJECTIVES 143

included in the final list of learning objectivesis 2 because the topics about alocation and

runtime storage management are not included in our intersection for the exam.

Again, there are imprecise terms that | propose definitionsfor. In learning objective
4, we see the use of the word implementation. It isbeing used in the computer science
sense of the student’ s ability to create source code that when run, will instruct the
computer to perform sometask. In this case, we want the student to be able to create

source code that defines data structures.

In [earning objective 5, the definition of compare will be similar to the definitions of
describe and discuss; that is, when students are asked about the different implementations
of data structures, they should be able to articulate in words the similarities and

differences between them.

In learning objective 7, we see the terms compare and contrast. The ability to
compare and contrast is an extension of a student’ s ability to compare, so the student
should be able to articulate in words similarities as well as differences among the two

ways to implement data structures.

Two topics from PF3 are not explicitly covered by the learning objectives: string

processing and the data structures graphs and trees (see learning objective 6).

An intuitive definition of string processing would be any computation that involves
strings, i.e. sequences of characters. However, exactly which computations are we most

concerned with in CS1 and CS2? This question is not answered by this knowledge unit.

144 CHAPTER5 LEARNING OBJECTIVES

Therefore, let us consider the string processing topics covered in anumber of the
more popular textsfor CS1. The textswe will look at are not an exhaustive sample;
however, they do represent all three of the programming-first approaches (Harvey and
Wright 1999; Hanly and Koffman 2003; Dietel and Dietel 2004; Dietel and Dietel 2005;
Dietel and Dietel 2005; Horstmann 2006; Savitch 2006; Lewis and Loftus 2007). These
texts were chosen based on their popularity as evidenced by discussion of them at
conferences, promotion on various publisher’ s websites, and sales rankings. Searching
the table of contents, indexes, and chapters that deal with stringsin these texts leadsto a
commonality in the string processing topics that are covered. Thereisaways a part of
the chapters explaining what a string is, how to create a string, and how assignment
works with strings, which for the purposes of this topic and learning objective are already

covered by learning objectives 1 and 2 of this section.

The other common operations consist of creating substrings (which can also be
categorized as parsing), using substrings, string concatenation (combining or joining end-
to-end two or more separate strings together to create one larger string), and string
comparison. Also, each text makes note of string operations that are built into the
specific programming language. Therefore, the new learning objective for this section

will consist of those common operations (see item 9 in the right column of Table 5-2).

Resolving the omission of graphs and trees from learning objective 6 isfairly trivial.
We can simply add these two other data structures to the list, and remove records, which

are not covered in our intersection.

CHAPTER 5 LEARNING OBJECTIVES

145

Table 5-2 shows the original learning objectives for this knowledge unit and the

newly revised learning objectives for this knowledge unit; changes are indicated in

boldface.

Original Learning Objectives

Revised Learning Objectives

1. Discuss the representation and use of primitive
data types and built-in data structures.

2. Describe how the data structuresin the topic list
are alocated and used in memory.

3. Describe common applications for each data
structure in the topic list.

4. Implement the user-defined data structuresin a
high-level language.

5. Compare dternative implementations of data
structures with respect to performance.

6. Write programs that use each of the following
data structures: arrays, records, strings, linked
lists, stacks, queues, and hash tables.

7. Compare and contrast the cost and benefits of
dynamic and static data structure
implementations.

8. Choose the appropriate data structure for
modeling a given problem.

. Discuss the representation and use of primitive

data types and built-in data structures.

. Describe common applications for each data

structure in the topic list.

. Create executable source code for the user-

defined data structures in a high-level language.

. Articulate the similarities and differences among

alternative implementations of data structures
with respect to performance..

. Write programsthat use each of the following

data structures: arrays, strings, linked lists,
stacks, queues, hash tables, trees, and graphs.

. Articulate the similarities and differences

between dynamic and static data structure
implementations, focusing especially on the
costs and benefits of each.

. Choose the appropriate data structure for

modeling a given problem.

. Demonstrate ability to par se, concatenate,

and compare strings, use substrings, and
describe the varioustypes of operations that
are built into a high-level programming
language for usewith strings.

Table 5-2: Comparison of old and revised lear ning objectivesfor PF3. Fundamental Data Structures

146

CHAPTER5 LEARNING OBJECTIVES

5.2.3 PF4. Recursion L earning Objectives

The following topics from this knowledge unit are included in the intersection:

The concept of recursion
Simple recursive procedures
Divide-and-conguer strategies
Implementation of recursion

The learning objectives given for this knowledge unit in Appendix A of CC2001 are

shown in the left column Table 5-3. For this knowledge unit, the topics of recursive

mathematical functions and recursive backtracking are not included in our intersection

but are part of this knowledge unit in CC2001. None of the learning objectives for this

section address the topic of recursive mathematical functions. The only learning

objective that talks about recursive backtracking is 7 and will be removed.

Table 5-3 shows the original learning objectives for this knowledge unit and the

newly revised learning objectives for this knowledge unit; changes are indicated in

boldface.

CHAPTER 5 LEARNING OBJECTIVES

147

Original Learning Objectives

Revised Learning Objectives

1. Describe the concept of recursion and give
examples of its use.

2. ldentify the base case and the general case of a
recursively defined problem.

3. Compareiterative and recursive solutions for
elementary problems such as factorial.

4. Describe the divide-and-conquer approach.

5. Implement, test, and debug simple recursive
functions and procedures.

6. Describe how recursion can be implemented
using a stack.

7. Discuss problems for which backtracking is an
appropriate solution.

8. Determine when arecursive solution is
appropriate for a problem.

. Describe the concept of recursion and give

examples of its use.

. Identify the base case and the general case of a

recursively defined problem.

. Compare iterative and recursive solutions for

elementary problems such as factorial.

. Describe the divide-and-conquer approach.

. Implement, test, and debug simple recursive

functions and procedures.

. Describe how recursion can be implemented

using a stack.

. Determine when arecursive solution is

appropriate for a problem.

Table 5-3: Comparison of old and revised learning objectivesfor PF1. Fundamental Programming
Constructs

5.3 Learning Objectives from Algorithmsand Complexity

531 AL1. Basic Algorithm Analysis L earning Objectives

The following topics from this knowledge unit are included in the intersection:

* Asymptotic analysis of upper and average complexity bounds

* Big O notation

e Standard complexity classes

The learning objectives given for this knowledge unit in Appendix A of CC2001 are

shown in the left column Table 5-4. Learning objectives 1 and 2 will be modified to only

discuss Big O notation because the only notation included in our intersection is Big O.

148 CHAPTER5 LEARNING OBJECTIVES

Learning objective 4 and learning objective 5 will be eliminated, because both are
concerned with the topic of recurrence relations, which is not included in the intersection

of topics used to create our exam.

The only topic that does not seem to be adequately covered by the learning objectives
is standard complexity classes, so alearning objective will be added for recognition of

the standard complexity classes.

Table 5-4 shows the original learning objectives for this knowledge unit and the

newly revised learning objectives for this knowledge unit; changes are indicated in

boldface.
Original Learning Objectives Revised Learning Objectives

1. Explain the use of Big O, omega, and theta 1. Explain the use of Big O notation to describe
notation to describe the amount of work done the amount of work done by an algorithm.
by an algorithm.))))

2. Use Big O notation to give asymptotic upper

2. Use Big O, omega, and theta notation to give bounds on time and space complexity of

asymptotic upper, lower, and tight bounds on algorithms.

time and space complexity of agorithms.)))
3. Determine the time and space complexity of

3. Determine the time and space complexity of simple algorithms.

simple algorithms.
4. ldentify the standard complexity classes and

4. Deduce recurrence relations that describe the arrangethem in order of growth rate.
time complexity of recursively defined
agorithms.

5. Solve elementary recurrence relations.

Table 5-4: Comparison of old and revised learning objectivesfor AL 1. Basic Algorithmic Analysis

CHAPTER 5 LEARNING OBJECTIVES 149

5.3.2 AL 3. Fundamental Computing Algorithms L earning
Objectives

The following topics from this knowledge unit are included in the intersection:

e Simple numerical agorithms

» Sequentia and binary search algorithms

* Quadratic sorting algorithms (sel ection, insertion)

* O(N log N) sorting algorithms (Quicksort, heapsort, mergesort)

e Hashtables

* Binary search trees

The learning objectives given for this knowledge unit in Appendix A of CC2001 are

shown in the left column of Table 5-5. Learning objectives 3 and 4 concern hash tables
and collision avoidance strategies, which do not appear in the intersection of topics and
are not needed for thislist of learning objectives. Learning objective 6 should be

eliminated, because it includes the topics on graphs and graph algorithms that are not

included in the intersection of topics for our exam.

Topics that are not covered by these learning objectives that are included in the
intersection are: simple numerical agorithms, sequential and binary search algorithms,

and binary search trees.

“Simple numerical algorithms’ does not have a clear definition in this knowledge
unit. Cormen, Leiserson, and Rivest (1990), one of the leading books in the area of
algorithms, has no chapter titles or section headings for “simple numerica algorithms”,
nor does the index provide an entry for “simple numerical algorithms’ The first chapter

of the text does not provide a definition for this term, either. A search of the texts for

150 CHAPTER5 LEARNING OBJECTIVES

CSl1 that were used in section 5.2.2 to define string processing did not bring forth any

definition of thisterm, either.

A Google search of “simple numerical algorithms” (including quotes) brought several
references back to the posting of the CC2001 document on the web! Also included in the
result set were course web pages that have that exact term in them. Unfortunately, these
courses simply use the term and the other topics from this knowledge unit as part of their

syllabus with no further definition of it.

It would appear that most instructors have an intuitive notion of what this term means
without a clear definition. Two course websites, elaborate on the term a bit more. The
first site, a curriculum document for the Programming | course in a high school, gives as
examples of “simple numerical algorithms” counting, summing, averaging, and rounding
(Dade Computer Programming | Description 2001). The second gives an assignment, in
aclass entitled “ Object-Oriented Programming”, whose stated purposeis “To program a
simple numerica agorithminaC++ class’ (Bond 2004). This assignment asks the
student to implement equations for linear regression. It seems reasonable to include not
only counting, summing, averaging, and rounding, but also the ability to translate into
code any ssimple mathematical formula, such as simple subtraction, multiplication,
division, and modulus, as well as slightly more complicated formulae like geometric area
or computation of the discriminant, and even more complicated formulae like linear
regression, Newton’s method, or Simpson’srule. This topic might well be described by

the blanket statement of simply translating formulae into programs.

CHAPTER 5 LEARNING OBJECTIVES 151

A combination of all of these will be considered “simple numeric algorithms.” One
other consideration that needs to be made is that, in some languages, many simple
mathematical functions are already implemented, and the students should be able to use
those in their computation aswell. The learning objective that will encompass thisidea
will include the ability to implement these simple numeric algorithmsin code. Therefore,

we will add learning objective 8 to this section (see Table 5-5).

There is abrief mention of searching algorithmsin one of the learning objectives, but
it isaso important to include the ability to implement these algorithms, which is not
included in any of the learning objectives. To rectify this situation, searching has been

added to learning objective 1.

Binary search trees are mentioned as atopic in this knowledge unit and appear in the
intersection of topics created, but are not given any mention in the learning objectives.
This knowledge unit is not concerned with implementation of a binary search tree,
because that topic isincluded in PF3, Fundamental data structures. Because thisisthe
algorithms and complexity knowledge unit, binary search trees should not be considered
in an implementation in source code way, but rather how a binary search tree is useful in
many of the algorithms discussed in this section, such as searching and sorting. It is
important to note that learning objective 5 mentions “application-specific patternsin the
input data.” Patternsin datadirectly affect how a binary search tree is constructed and

could therefore affect its efficiency. Therefore, we will include a more specific mention

152 CHAPTER5 LEARNING OBJECTIVES

of binary search trees in learning objective 4 and expect that issues with binary search

trees will also be discussed for learning objective 5.

Table 5-5 shows the original learning objectives for this knowledge unit and the

newly revised learning objectives for this knowledge unit; changes are indicated in

boldface.
Original Learning Objectives Revised Learning Objectives
1. Implement the most common quadratic and 1. Implement the most common sear ching
O(N log N) sorting algorithms. algorithms as well asthe most common

])]] quadratic and O(N log N) sorting algorithms.
2. Design and implement an appropriate hashing

function for an application. 2. Discuss the computational efficiency of the
principle algorithms for sorting, searching
3. DeSIgn and Implement acollision-resolution (induding b|nary %arch trees), and hash| ng_
agorithm for a hash table.
3. Discuss factors other than computational
4. Discussthe computational efficiency of the efficiency that influence the choice of
pri n(;i ple algorithms for sorting, searching, algorithms, such as programming time,
hashing. maintainability, and the use of application-

. . ifi inthei
5. Discuss factors other than computational specific patternsin the input data.

efficiency that influence the choice of 4. Demonstrate the following capabilities: to
algorithms, such as programming time, evaluate algorithms, to select from arange of
maintainability, and the use of application- possible options, to provide justification for
specific patternsin the input data. that selection, and to implement the algorithm

6. Solve problems using the fundamental graph In programming context.

algo”thms, inCI Uding depth-fll’St and breadth' 5. |mp|ement S mp|e numerical a|gor|tth,
first search, single-source and all-pairs shortest such simple arithmetic (addition,

paths, transitive closure, topological sort, and at subtraction, multiplication, division,

least one minimum spanning tree a gorithm. modulus), aswell as known mathematical

formulae (geometric area, discriminant,

evaluate dgorithms, seect from arenge o Broarama,using both uas-aefined and any

ggsstti)l ic’pt'do?& itrcr)1 rirowcriﬂﬁstgll catli?r?nf]ci);that language-provided mathematical functions
ection, and to implement the algo needed.

programming context.

7. Demonstrate the following capabilities: to

Table 5-5: Comparison of old and revised lear ning objectives for AL 3. Fundamental Computing
Algorithms

CHAPTER 5 LEARNING OBJECTIVES 153
5.4 Learning Objectives from Programming L anguages

54.1 PL 4. Declarations and Types L ear ning Objectives
The following topics from this knowledge unit are included in the intersection:

» The conception of types as a set of values together with a set of
operations
* Declaration models (binding, visibility, scope, lifetime)
» Overview of type checking
The learning objectives given for this knowledge unit in Appendix A of CC2001 are
shown in the left column of Table 5-6. We omit, learning objective 1, which touches on
the concept of declaration models but also includes the topic of programming-in-the-

large, because those topics are not included in our intersection. Learning objectives 5 and

6 are also eliminated for the same reason.

The only topic in our intersection that appears to be missing from the learning
objectivesistheideathat atypeisaset of valuestogether with a set of operations. The
idea of value is mentioned in learning objective 2, but only in the context of avariable,
not atype specifically. The problem with thistopicisthat it is basically a definition,
which is applied in the ideas tested by learning objectives 2 and 3. More specifically, one
of the main reasons that type compatibility issues arise is because the values and
operations that can be performed on one type may not be the same as another. Even

though not explicit, this definition of type isincorporated into the learning objectives.

154 CHAPTER5 LEARNING OBJECTIVES

Table 5-6 shows the original learning objectives for this knowledge unit and the

newly revised learning objectives for this knowledge unit; changes are indicated in

boldface.
Original Learning Objectives Revised Learning Objectives

1. Explain the value of declaration models, 1. ldentify and describe the properties of a
especially with respect to programming-in-the- variable such as associated address, value,
large. scope, persistence, and size.

2. Identify and describe the properties of a 2. Discusstypeincompatibility.
variable such as associated address, value, 3. Demonstrate different forms of binding,
scope, persistence, and size. visibility, scoping, and lifetime

3. Discusstype incompatibility. management.

4. Demongtrate different forms of binding,
visibility, scoping, and lifetime management.

5. Defend the importance of type-checking in
providing abstraction and safety.

Table 5-6: Comparison of old and revised learning objectivesfor PF1. Fundamental Programming
Constructs

54.2 PL5. Abstraction M echanisms L ear ning Objectives
The following topics from this knowledge unit are included in the intersection:

» Parameterization mechanisms (reference vs. vaue)
* Type parameters and parameterized types

The learning objectives given for this knowledge unit in Appendix A of CC2001 are
shown in the left column of Table 5-7. Learning objectives 1, 3, and 4 are all concerned

with topics that are not included in our intersection and will be omitted.

The only intersection topics that seems to be missing from the learning objectives are

type parameters and parameterized types. These are concerned with parametric

CHAPTER 5 LEARNING OBJECTIVES 155

polymorphism, which can be characterized as “a special type of polymorphism® in which
type expressions are parameterized” (Sethi, 1996: 359). Thistype of polymorphism
refersto the ability of afunction to have parameters which are given generic types. The
type given in the function definition is ssmply a named place holder. When the function
isactually run, the type of the actual parameter passed in will become the type of the

parameter for that function call.

Thistype of polymorphism is available in many languages. C/C++ callsthis ability
“templates’; Java 1.5 has just added this ability in the form of generics; ML supportsthis
feature internally through the typing mechanism built into the language. Parameterized
type expressions can be used for many parts of a program, including: the types for the
parameters of functions, return types, and the type of elements stored in abstract data
types. For this knowledge unit, it isimportant to add alearning objective requiring that
students be familiar with the use of parameterized types in their introductory language

(see objective 5in Table 5-7).

Table 5-7 shows the original learning objectives for this knowledge unit and the
newly revised learning objectives for this knowledge unit; changes are indicated in

boldface.

%> Polymorphism can be defined as the “ability of subclasses to respond differently to the same messages’
(vanDam et al., 1997:67). An example of polymorphism isthe following. Many thingsin thisworld can
fly (helicopters, 747s, ducks, and robins, to name afew). However, each of these objectsfliesin decidedly
different ways. Each of these objects could derive from a common superclass (or interface) and inherit (or
implement) the ability to fly. A program could be written that helps simulate air traffic conditions. This
program only deals with elements that can fly (i.e. have that capability), so al of the objects mentioned
qualify. During the course of the execution of the program, each object istold to fly. The program does
not know which object it is speaking to, but each object will receive the message and “fly” appropriately.

156 CHAPTER5 LEARNING OBJECTIVES

Original Learning Objectives Revised Learning Objectives
1. Explain how abstraction mechanisms support 1. Demonstrate the difference between call-by-
the creation of reusable software components. value and call-by-reference parameter passing.
2. Demonstrate the difference between call-by- 2. Demonstrate the ability to use
value and call-by-reference parameter passing. parameterized typesin programs.

3. Defend the importance of abstractions,
especially with respect to programming-in-the-
large.

4. Describe how the computer system uses
activation records to manage program modules
and their data.

Table 5-7: Comparison of old and revised lear ning objectives for PL5. Abstractions M echanisms

54.3 PL 6. Object-oriented Programming L ear ning Objectives
The following topics from this knowledge unit are included in the intersection:

» Encapsulation and information-hiding
» Classes and subclasses
* Inheritance (overriding, dynamic dispatch)
» Polymorphism (subtype polymorphism vs. inheritance)
» Classhierarchies
» Collection classes and iteration protocols
The learning objectives given for this knowledge unit in Appendix A of CC2001 are
shown in the left column of Table 5-8. Learning objective 1 will be not be included

because object-oriented design is not included in our intersection.

However, the topics of classes and subclasses, polymorphism, and collection classes
do not seem to be covered in any of the learning objectives. Classes and subclasses are

part of the discussion of inheritance, but do not specifically appear in any learning

CHAPTER 5 LEARNING OBJECTIVES 157

objective discussing inheritance. Therefore, these terms will be added to learning
objective 4. Also, it is more common to see that relationships occur between classes, not
objects. In fact, the specification for UML, the design tool used most commonly by
object-oriented developersillustrates this fact (Rumbaugh, Jacobson, and Booch 1999).

Therefore, the learning objective will be changed to reflect this usage.

Polymorphism is atopic that is alluded to in learning objective 6, but is not explicitly
stated. Also, the difference between subtype polymorphism and inheritanceis an idea
presented in the topic list that is not given in any learning objective. Two new learning

objectives will be created to incorporate these ideas.

Collection classes are alluded to in learning objective 7 but, once again, not explicitly
stated. A new learning objective will be inserted to ensure that students are able to create

and use collections.

Table 5-8 shows the original learning objectives for this knowledge unit and the
newly revised learning objectives for this knowledge unit; changes are indicated in

boldface.

158 CHAPTER5 LEARNING OBJECTIVES

Original Learning Objectives Revised Learning Objectives

1. Justify the philosophy of object-oriented design 1. Design, implement, test, and debug simple
and the concepts of encapsulation, abstraction, programsin an object-oriented programming
inheritance, and polymorphism. language.

2. Design, implement, test, and debug simple 2. Describe how the class mechanism supports
programsin an object-oriented programming encapsulation and information hiding.
language.

3. Design, implement, and test the implementation

3. Describe how the class mechanism supports of “is-a" relationships among classes using a
encapsulation and information-hiding. class hierarchy and inheritance. Distinguish

between the superclass and the subclassesin

4. Design, implement, and test the implementation these relationships.
of the “is-a’ relationship among objects using a
class hierarchy and inheritance. 4. Compare and contrast the notions of

overloading and overriding methodsin an

5. Compare and contrast the notions of object-oriented language.
overloading and overriding methodsin an
object-oriented language. 5. Explain the relationship between the static

structure of the class and dynamic structure of

6. EXp|a|n therel atlonShlp between the static the instances of the C|a$, espec| a”y inthe

7. Describe how iterators access the elements of a 6. Describe how iterators access the elements of
container. the collection.

7. Describe the differ ence between subtype
polymor phism and inheritance.

8. Create acollection, insert elementsinto a
collection, and iterate over dementsin a
collection.

Table 5-8: Comparison of old and revised learning objectivesfor PL6. Object-oriented Programming

5.5 Conclusion

After compiling thelist of topics for the intersection of programming-first CS1-CS2
and looking at the learning objectives that are given in Appendix A of CC2001 for each
of the knowledge units described in CC2001, afinal list of learning objectives for the
topicsin the intersection has been created. Learning objectives that do not deal with

topicsin the intersection have been eliminated, and the search has discovered that some

CHAPTER 5 LEARNING OBJECTIVES 159

learning objectives needed to be re-worded or added to fit all of the topicsin the

intersection. Table 5-9 givesthefinal list of al learning objectives for the topicsin the

intersection of programming-first CS1-CS2.

PF1. Fundamental Programming Constructs L earning Objectives

1.

Analyze and explain the behavior of simple programs involving the fundamental
programming constructs covered by this unit.

Modify and expand short programs that use standard conditional and iterative control
structures and functions.

Design, implement, test, and debug a program that uses each of the following fundamental
programming constructs. basic computation, simple 1/0O, standard conditional and iterative
structures, and the definition of functions.

Choose appropriate conditional and iteration constructs for a given programming task.

Describe the mechanics of parameter passing.

PF3. Fundamental Data Structures L ear ning Objectives

1.

2
3
4,
5

Discuss the representation and use of primitive data types and built-in data structures.
Describe common applications for each data structure in the topic list.

Implement the user-defined data structures in a high-level language.

Compare aternative implementations of data structures with respect to performance.

Write programs that use each of the following data structures: arrays, strings, linked lists,
stacks, queues, hash tables, trees, and graphs.

Compare and contrast the cost and benefits of dynamic and static data structure
implementations.

Choose the appropriate data structure for modeling a given problem.

Demonstrate ability to parse, concatenate, and compare strings, use substrings, and describe
the various types of operations that are built into a high-level programming language for use
with strings.

PF4. Recursion Learning Objectives

1
2.
3.

Describe the concept of recursion and give examples of its use.
Identify the base case and the general case of arecursively defined problem.

Compare iterative and recursive solutions for elementary problems such as factorial.

160 CHAPTER5 LEARNING OBJECTIVES

Describe the divide-and-conquer approach.
Implement, test, and debug simple recursive functions and procedures.
Describe how recursion can be implemented using a stack.

Determine when arecursive solution is appropriate for a problem.

© N o o &

Express a recursive mathematical function in terms of a base case and arecursive case.
AL 1. Basic Algorithm Analysis L earning Objectives
1. Explainthe use of Big O notation to describe the amount of work done by an agorithm.

2. UseBig O notation to give asymptotic upper bounds on time and space complexity of
agorithms.

3. Determine the time and space complexity of simple algorithms.
4. Identify the standard complexity classes and arrange them in order of growth rate.

AL 3. Fundamental Computing Algorithms L ear ning Objectives
1. Implement the most common searching algorithms as well as the most common quadratic and
O(N log N) sorting algorithms.

2. Discuss the computational efficiency of the principle algorithms for sorting, searching
(including binary search trees), and hashing.

3. Discuss factors other than computational efficiency that influence the choice of agorithms,
such as programming time, maintai nability, and the use of application-specific patternsin the
input data.

4. Demonstrate the following capabilities: to evaluate algorithms, to select from arange of
possible options, to provide justification for that selection, and to implement the algorithm in
programming context.

5. Implement simple numerical algorithms, such simple arithmetic (addition, subtraction,
multiplication, division, modulus), as well as known mathematical formulae (geometric area,
discriminant, linear regression, Simpson’srule, etc.) in programs, using both user-defined and
any language-provided mathematical functions needed.

PL4. Declarations and Types L ear ning Objectives

1. Identify and describe the properties of a variable such as associated address, value, scope,
persistence, and size.

2. Discusstypeincompatibility.
3. Demongtrate different forms of binding, visibility, scoping, and lifetime management.

PL5. Abstraction M echanisms L ear ning Obj ectives
1. Demonstrate the difference between call-by-value and call-by-reference parameter passing.

2. Demongtrate the ahility to use parameterized typesin programs.

CHAPTER 5 LEARNING OBJECTIVES 161

PL 6. Object-oriented Programming L earning Objectives

1.

Design, implement, test, and debug simple programsin an object-oriented programming
language.

Describe how the class mechanism supports encapsul ation and information hiding.

Design, implement, and test the implementation of “is-a’ relationships among classes using a
class hierarchy and inheritance. Distinguish between the superclass and the subclassesin
these relationships.

Compare and contrast the notions of overloading and overriding methods in an object-
oriented language.

Explain the relationship between the static structure of the class and dynamic structure of the
instances of the class, especially in the context of how dynamic dispatch isinvolved in
subtype polymorphism.

Describe how iterators access the elements of the collection.
Describe the difference between subtype polymorphism and inheritance.

Create a collection, insert elements into a collection, and iterate over elementsin a collection.

Table5-9: Final List of Learning Objectives

162

Chapter 6

Creation and Critique of Exam

6.1 Introduction

The questions on our exam are designed to reflect the refined list of topics and
learning objectives. The initial drafts of the test were given afine-grained critique by
three instructors of introductory courses at two different institutions. Both were 4-year
undergraduate and graduate universities, one public, one private. Other faculty members
at those same institutions also commented on and critiqued the exam. The final version
incorporates these comments and criticisms; it is presented in full as Appendix A of this
dissertation. The construction of the exam is discussed in this chapter. Questions
presented are shown with point weightings. These weightings and discussion of grading
the exam are given in Chapter 7. The results of administrating and grading it are

discussed in Chapter 8.

6.2 Creating Questions

To paraphrase Lewis Carroll, “begin at the beginning.” Thisis much easier said than

done with alist of about 50 topicsto be covered. The starting point in the process of

163

164 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

creating an exam of this type was not immediately obvious. Therefore, the exam was
essentially created in pieces, each roughly corresponding to the knowledge units to be
included in the exam. The topics motivated the various questions, and the learning

objectives provided their foundation.

One problem was that many topics needed a code-based question to really assess the
student’s mastery of it. One of the original goals of the assessment was language-
independence. However, this conflicts with the decision to make the assessment based
on programming-first approaches. A good deal of the time in a programming-first

sequence is spent on the language and on programming.

In an effort to keep this exam from being an exam about language X, an effort was
made to make every question that had a coding component focus on topics that are
independent of language-specifics. The lack of emphasis on an actual language also
makes its way into the grading guideline for the exam. Chapter 7 discusses how the
exam should be graded; it will be seen that syntactic goals are secondary to other ideas

presented in the questions.

However, alanguage needed to be chosen for the creation of the exam. The language
decision was made in deference to the test subjects for the exam: studentsin CSE 116
(CS2) at the University at Buffalo, SUNY. The CS1-CS2 introductory sequence at UB
(CSE115-CSE116) istaught in Java, so Java was chosen for the language of
implementation for all code-based questions. Instructors at other institutions can easily

substitute other programming languages for Java.

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 165

The questions will be discussed in thematic units (primarily corresponding to
knowledge unit, and grouped together for reference by number, asindicated in Table 6-1,
6-2, and 6-3 showing which topics are covered in which group). At the end of this
chapter, each question on the exam is given a group coding that refers back to the groups
discussed. Inthe exam itself, questions mostly appear grouped together in thisway. The
only notable exception isin a set of true-false questions that were grouped together by

type of question rather than coverage (questions 46 — 50).

The groupings that are presented here are based primarily on the way the questions
were developed. Topics from knowledge units that naturally went together had questions
developed together. The numbering of the groups has no significance other than roughly
corresponding to the order in which the first topic in that group appears in the overal list

of topicsin the intersection created for this exam.

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

166

SR 0

Ao |dwod prepuels 4

uomelou O Big
spunog A1ixe[dwiod
afesone pue Joddn

jossApue onodw/isy 11V
uosIN®Ml
10 uorEUBWR (W
saiforJis ,enbucd
-pue-apInIQg «
sainpasoud
aAlIN%IaIdwIS 4
uosIN3.
Jo1d20U00BY] 4 ¥4d
8IN1ONJIS eep
61 ayy Busooyo
Jo}saiferIIS
S99.1 pue sydels) .| seousse el
sdew ysey pue pue
‘sanenb ‘syoeis 4| skewiod
SINJONUIS PANUIT sadAy Busssooud
sfelly | aAnIWILG «BuLls pue sBULIS €4d
Bussed pWe.rd
pUe suoiouNS 4
S2IN1oNIIS
[0J3U0D DAY
pue [euonIpuoy «
O/191dwis ypbenbue| pro|
ewubsse -pybiye Jo
pUe ‘suossaldxe |Sonuewss pue
'sodA) ‘s|qele A xefsoseg | Tdd
, dnoio g9 dnoio G dnoio 7 dnolo ¢ dnoio Zdnoio Tdnoin | N

18 KU isknowledge unit. The knowledge unit names have been eliminated from this chart because of space

constraints.

167

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

SlyoeRIY D «

(eaue11IBYUI
'sA wsiydiowAjod
adAigns)
wsiydiowA|od «
(Yoredsip
21wreuAp ‘BuippliRAO)
aoue YU «
sassejoqns
pue sasse|) sjoo0j04d
Buipiy-uorewiojul uoesll pue
pue uoiensdeous 535520 UON1I||0D « 971d
sadAy
poziepweed pue
siepwerdadA]
(BneA 'snaoueRRI)
Swsiueyosw
uoleziepuwerkd Gd
(Gwey!| pue ‘adoos
‘Ajgsia ‘Buipuia)
Sfepow uolereeqd «
suolrsedo Jo Bse
ynum Joeypebol ssnea
J0 psesesadAy
Jo uondsoucoayl «
Bueyd
adAy Jo MOINBAQ « ¥d
(1osebiew ‘wosdeay
‘LosY2INQ) swyiiobe
Bunios (N Bo| N)O «
(uonsesul
‘uondeEs) swyiLobe
Buiios o1relpend S99.1] |o4eas swyiobe
swiy1oB e yosess Areuig 4 [eaLewnu
Areuiq pue enuenbag S9|0e) UseH « aldwis « €1V
] T
/ dnoio g9 dnoio dnoio ¥ dnoio ¢ dnoio Z dnoio dnoi| Ny

Table 6-1: Topicsfrom knowledge unitsincluded in each group

168 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

6.3 Structure of Exam Question Groups

The following sections discuss the questions that were created for each group.
Originally, the guestions on the exam were in the basic order of these groups. However,
the grouping of questions within the group was essentially random, in that they were
organized in the order that they were written, which was determined essentially by
chance and the particular inspiration | had on a particular day. The ordering was changed
during the critique process. Therefore, no particular emphasis should be given to the
ordering of the questions, or the order in which they appear in the exam in relation to
other questions. Thereis no particularly well-defined structure for the placement of the
guestions. The question numbers referred to in each section refer to the number(s) of the

guestions on the exam in its completed form.

6.3.1 Basic Syntax Questions (Group 1)

This group is made up of questions that cover only one learning objective from PF1
Fundamental Programming Constructs: basic syntax and semantics of a higher-level
language. While this objective istested in every question that involves code, thereisa
facet of thistopic that involves the vocabulary of programming. For example,
understanding syntax assumes not only the creation of a declaration for a variable but

knowledge of what avariableis.

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 169

Therefore, the questions for this section ask the studentsto look at a piece of code and
identify various programming elementsin it. Questions 60 — 78 ask the students to

identify 19 different parts of code from a code example provided.

Given the following list of 19 parts of code, you should identify one example of each of
theitemsin the code provided for this section (in the answer sheet) by precisely circling
and clearly identifying by number the element in the code segment. Make sure that your
circles are clearly identified with numbers that are clearly written. If the markings are not
clear, the question will simply be marked incorrect and given no credit. If thereisno
example of the item in the code, you should write the words “Does not exist” on the line
next to the element in the answer sheet.

60) Class hame [1 point]

61) Constructor definition [1 point]

62) Assignment statement [1 point]

63) Comment [1 point]

64) Instance variable declaration [1 point]

65) Actual parameter (argument) [1 point]

66) Formal parameter [1 point]

67) Statement that displays information [1 point]

68) Access (Visihility) control modifier [1 point]

69) Accessor method definition [1 point]

70) Mutator method definition [1 point]

71) Creation/instantiation of an object [1 point]

72) Method call/invocation [1 point]

73) Method return type specification [1 point]

74) Superclass name [1 point]

75) Subclass name [1 point]

76) Interface name [1 point]

77) Name of aclass that implements an interface [1 point]
78) Method overloading (identify one of the methods that is overloaded) [1 point]

/* The cl asses given below were witten for the purposes of
* this exam In reality, they would each be in their own
* separate file, but are reprinted here as one long file
for ease of reading. This “print-out” spans two pages,
so please | ook at both pages while answering the
foll owi ng questions.

/

* ok X

public class App {
private Puppy _puppy;
private ID _id;
public App (){
Systemout.println("App constructor called.");
_puppy = new Puppy(new Toy());
this.setlD(new I D(this, _puppy));

170

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

Systemout. println("App constructor end.");

}

public void setID(IDid) {
_id =1id;

}

public static void main (String[] args) {
App app = new App();

} /1 end of main ()

Y1 App

public interface Col orable {
java. awt . Col or get Col or();
voi d set Col or (j ava. awmt . Col or col or);
}// Col orable

public class ID inplenents Col orabl e{

private Aninal _ani mal;

private java.aw . Col or _color;

public ID (App app, Aninal animal){
_animal = ani nal ;
_color = java. awt . Col or. BLACK;

}

public java.awt.Col or getColor() {
return _color;

}

public void setColor(java.awm. Col or color) {
_color = color;
}

Y}/ 1D

public class Animl {
private Toy _toy;
public Animal (){ _toy = new Toy(); }
public Animal (Toy toy) { _toy = toy; }
protected Toy getToy() { return _toy; }
public voi d sonet hi ngShoul dHappen() {
_toy. doSonet hi ng();

}
}/ 1 Ani mal

public class Puppy extends Aninal{

public Puppy() {}
public Puppy (Toy toy){
super (toy);
t hi s. doSomet hi ngW t hThi sCol or (
this.getToy().getColor());
}
public void doSonet hi ngWt hThi sCol or
(java.awt. Col or color){
this.getToy().set Col or(col or.darker());

}
public voi d somnet hi ngShoul dHappen() {

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 171

super . sonet hi ngShoul dHappen() ;
thi s. get Toy(). doNot hi ng();

}
}/ ! Puppy

public class Toy {
private java.awt . Col or _col or;
private String[] _sounds;
public Toy (){ _color = java.aw. Col or. RED; }
public void setColor(java.awm. Col or color) {
_color = color;
}
public java.awt.Color getColor() { return _color; }
public void doSonet hing() {
_sounds = new String[20];
for (int count = 0; count < _sounds.length; count++){
_sounds[count] = "Squeak";
} /1 end of for ()
System out . printl n(_sounds);
}
public void doNothing() ({
/1 This method really does not hing.

Y } Toy
To adapt these questions for different languages, not only must the code be changed,
but the vocabulary terms should also be reviewed. For example, if an introductory
sequence uses a language that does not support method overloading, that question should
be removed from the assessment, because students would most likely not have ever used
the term, and it would simply cause confusion while taking the exam. It is possible that
another programming construct implemented in the language could be substituted for the

removed term.

172 CHAPTER 6 CREATION AND CRITIQUE OF EXAM
6.3.2 Fundamentals and API Programming (Group 2)

The questions in this group cover the rest of the PF1 knowledge unit, Strings from

PF3, and simple numerical algorithms from AL3. The topic of API*

programming is
included in this group because the question that asks students to use an API also involves

the use of strings.

6.3.21 Functionsand parameter passing

Questions 79 — 82 of the exam test the basic concept of functions and parameter
passing. They ask studentsto look at a definition of a class with several methods defined
inside it, each taking different parameters. The questions ask the students what values
will be returned or output when calling the methods with values for the parameters. Note
that even though the question contains a class definition, the focus of this question isthe
methods and the values returned or output. Rewriting these questionsin most languages
would simply involve syntactic manipulations and possible removal of the outer class (if

the language does not support classes).

Usetheclass Si npl ePar ans and Si npl ePar ans App defined below to answer
guestions 79-82.

public class SinpleParans () {
private doubl e _data;
public SinpleParanms() {
_data = 5.75;

Y API stands for Application Programmers Interface. An entire knowledge unit devoted to this topic was
eliminated from the intersection of topics for this exam (see Chapter 4). As noted in Chapter 4, sometimes
it becomes necessary to include an APl when asking students to write code so as not to test their ability to
memorize library functions, but rather to use them effectively to perform some other task. In this case, the
students are asked to perform some string processing and are given a set of library functionsto assist in that
task.

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 173

}
public String nmethodl(String s) {

return s + “ additional stuff”;

}
public void nmethod2(int input) {

int temp = input + 1;
Systemout. println(“l nput was: “ + input
+ “and tenp is: “ + tenp);
}
public void nmethod3(double input) {
_data = input;

}
publ ic doubl e getData() {
return _data;

}
}/ /1 Si nmpl ePar ans

public class SinpleParansApp {
public Sinmpl eParanmsApp() {
Si npl eParanms sp = new Si npl ePar ans()
doubl e answer79 = sp.getData();
String answer80 = sp. nmethodl(“Sinple stuff.”);
sp. net hod2(6); //Needed for question 81
sp. net hod3(3. 8) ;
doubl e answer82 = sp.getData();

}

public static void main(String[] args) {
Si npl ePar ansApp spa = new Si npl ePar ansApp() ;

}
}/ 1 Si mpl ePar ams App

79) When the code for Si npl ePar ans App is executed, what value will answer79 be
assigned? [1 point]

80) When the code for Si npl ePar ans App is executed, what value will answer80 be
assigned? [1 point]

81) When the code for Si npl ePar anms App is executed, and et hod?2 is called with
the value 6, as indicated in the code with a comment, what text will be outputted? [1
point]

82) When the code for Si mpl ePar anms App is executed, what value will answer82
be assigned? [1 point]

174 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

6.3.2.2 Arithmetic and logical expressions

Questions 83 — 87 test basic expression evaluation of some, but not all, arithmetic and
logical expressions. They give the students a set of numerical and Boolean variables that
have been assigned values. Students are then presented with a number of arithmetic and
logic expressions and asked to evaluate them. These expressions do not cover al of the
arithmetic operators in Java, only the common ones (including modulus) for which there
are analogous operations in most languages. Some of the unary operators (like plus), the
bitwise operators on integers, the bit-shift operators, and the logical operators that do not

support short-circuit Boolean evaluation were not included in these questions.

Use the following variables and their values to eval uate the expressions given in
questions 83 - 91. Suppose each expression is executed independently (ie — no later
expression depends on aresult of a previous expression).

int a= 4 double d = 4.5
int b = 6; double e = 3.3
int ¢ = -3; double f = 0.5
bool ean g = true;
bool ean h = fal se;
bool ean i = true;

83 (a+b) * (c—c) [1point
84 (d/ f) + (a %b) [Lpoint
85 b < c [1poing]
86) d!'=1f [1point]

87) (g & h) || (!'i & h) [1point]

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 175

6.3.23 Expressionsand Assignment

Questions 88 — 90 use the idea of evaluating expressions, but assign the values of the
expressions back to a variable and ask the students for the value that the variable will be
assigned in the expression. These three questions differ from the previous questions only
in thisway. However, the concept of assignment to avariable isjust asimportant as

evaluation of expressions, and that idea is tested with these questions.

Now suppose the following lines of code have been executed. The variablesa and ¢
refer back to the previous page.

int x
int y

a,
C++;

88) What is the value of x?[1 point]
89) What is the value of y?[1 point]
90) What isthe value of c?[1 point]

Questions 92 — 93" test the ability to analyze the results of the execution of multiple
expressions that make up a numerical algorithm. Students are given a method that
computes the distance between two points and are asked to eval uate variables and
determine what values are returned. Thisteststheir ability to look at a numerical
algorithm in code and analyze its results. Even though this function is familiar to most
students, the way it is expressed inside the code is not in the form that would be presented
in a mathematics text, so a certain amount of analysis is needed to discern what is being

computed by the function.

Use the code for the method exp1 given below to answer questions 92 - 93.

18 Question 91 is a question in this section that actually fallsinto Group 3 (§6.3.3).

176

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

public double expl (int x1, int x2, int y1, int y2) {
int tempX = (x2 — x1) * (x2 — x1);
int tempY = (y2 - y1) * (y2 - yl);

return Math.sqgrt(tenmpX + tenmpY);
}

Suppose that the exp1 method is called in the following way:
expl(12, 16, 24, 27);

92) What is the value that will be computed for t enpX while the method isrunning?[1
point]

93) What value is returned from the method call? [1 point]

Questions 94 - 96 test the ability to understand conditional statements. Students are

presented with a single method whose body is a multiple-branch conditional statement.

The students are given method calls with values for the parameters and asked to give the

return value, which tests their ability to understand conditional statements. In these

guestions, the students are given a nested if-then-el se because the code involves ranges of

numbers, so a case statement is not appropriate.

Use the code for the class Condi t i onal given below to answer questions 94 — 96. For
guestions 94 — 96, you are presented with a method call. In the space provided, you
should give the value that is returned from the method call.

public class Conditional {
public String cond2 (double input) {

if (input <= 5.0 & input >= 0.0) {
return “First Branch”;

}

else if (input > 5.0 || input <= -2.0) {
return “Second Branch”;

}

el se {
return “Third Branch”;

}

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 177

}
94) cond2(3.5); [1point]

95) cond2(7. 345) ; [1 point]
96) cond2(-1.9); [1point]

Questions 97 — 100 test the ability to understand looping constructs. The students are
presented with a class that has three methods, where each method’ s body isaloop. The
students are given method calls and values for parameters and asked to state what values
are returned from the method. One of the methods prints out information in addition to
returning avalue. Asking for the return value also tests the student’s ability to
understand that printing information is not the same as returning avalue. This could be
viewed by some as a“trick” question. It isnot designed to be. It is designed to test the
ability of the student to understand that printing out information is not the same as

returning a value from a method.

Use the code for the class Looper given below to answer questions 97 — 100. For
questions 97 — 100, you are presented with amethod call. In the space provided, you
should give the value that is returned from the method call.

public class Looper {
public int loopl(int input) {
for (int i =1; i <= 20; i++) {

i nput ++;
}

return input;

}

public int loop2() {
for (int counter=10; counter>0; counter=counter-2) {
System out. println(“counter = “ + counter);
}

return O;
}

public int |oop3(int input) {

178 CHAPTER 6 CREATION AND CRITIQUE OF EXAM
while (input < 10) {
i nput = input * 2;
ieturn i nput;
}
97) 1 oopl1(20); [1poaint]
98) | oop2(); [1 point]
99) | oop3(3); [1point]

100) | oop3(32); [1poaint]

Questions 101 — 103 test string processing and reading from afile. Since many string
manipulation functions are built into Java, this question also overlaps APl programming,
because the API for the class to help with the reading of filesand the St r i ng classare

given as reference.

For questions 101 — 103, you will be filling in the methods for the class St ri ngFun as
described in each question. The empty skeleton for this classis given below for
reference. You will fill inthe areas with the ellipses(...). Please also note the
abbreviated API given for both thej ava. i 0. Buf f er edReader classaswell asthe
St ri ng class asthese could be of help to you while answering these questions.

i nport java.io.?*;

public class StringFun {
private java.util.ArrayList<String> _strings;
public StringFun() {
_strings = new java.util.ArrayList<String>();

//Loads the strings fromthe file specified into the
/1 ArraylLi st
public void loadFile(String filenanme) {]

}
/l1ndicates the nunber of Strings in the ArrayList that

/lare the right size
public int rightSize() {

}

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 179

/1 Counts the total nunber of letter Ps in all the
/lstrings in the ArraylLi st
public int countPs() ({

}

Abbreviated API for java.io.BufferedReader (from Sun’s Java APl docs)

Constructor Summary

Buf f er edReader (Reader in)
Create a buffering character-input stream that uses a default-sized input buffer.

Method Summary
voi d cl ose()

Close the stream.

i nt read()
Read a single character.

i nt read(char[] cbuf, int off, int |en)
Read charactersinto a portion of an array.

String readLi ne()

Read aline of text.

Abbreviated API for java.lang.String (from Sun’s Java APl docs)

Method Summary

char char At (i nt index)
Returnsthe char value at the specified index.

i nt conpar eTo(String anot her String)
Compares two strings lexicographically.

i nt conpar eTol gnoreCase(String str)
Compares two strings lexicographically, ignoring
case differences.

bool ean endsWth(String suffix)
Testsif this string ends with the specified suffix.

bool ean equal s(Obj ect anbj ect)
Compares this string to the specified object.

bool ean equal sl gnoreCase(String anot herString)
Comparesthis St r i ng to another St ri ng,
ignoring case considerations.

i nt I engt h()
Returns the length of this string.

180 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

String repl ace(char ol dChar, char newChar)
Returns a new string resulting from replacing all
occurrences of ol dChar in this string with newChar .

bool ean startsWth(String prefix)
Testsif this string starts with the specified prefix.
String substring(int beginlndex)
Returns a new string that is a substring of this
string.
String substring(int beginlndex, int endlndex)

Returns a new string that is a substring of this string.

String t oLower Case()
Converts al of the charactersinthisSt ri ng to
lower case using the rules of the default locale.

String t oUpper Case()
Converts al of the charactersinthisSt ri ng to

upper case using the rules of the default locale.

String t oUpper Case(Local e | ocal e)
Converts al of the charactersinthisSt ri ng to
upper case using the rules of the given Local e.

String trim)
Returns a copy of the string, with leading and
trailing whitespace omitted.

101) In your answer booklet, you will finish writing the code for the method | oadFi | e.
Note that some of the code is aready written for you. Thefileis already loaded into the
Buf f er edReader . Your task isto read each line of the file and input each oneinto
the ArrayLi st . Please note that we are also assuming that some other object will
handle the exceptions that might be thrown. [8 points]

public void loadFile(String fil enane) throws
Fi | eNot FoundException, | OException{

Buf f eredReader in = new BufferedReader (new
Fi | eReader (fil enane));

/1 Your code begins here.
//'Wite your code in the answer booklet.

}

102) Write the code for the method r i ght Si ze so that it returns the number of strings
in_strings whoselengthis between 3 and 10 charactersinclusive. [8 points]

public int rightSize() {
//IWite the code for this nmethod in your answer
/1 bookl et

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 181

}
103) Write the code for the method count Ps so that it returns the total number of

occurences of the letter Pin all of the stringsin_st ri ngs. Your method should count
both lower case (p) and upper case (P) letters. [8 points]

public int countPs() {
/IWite the code for this method in your answer
/1 bookl et

}
6.3.3 Types, Declaration Models, and Parameter Passing (Group 3)

The questions in this group cover the topics of types, scoping, lifetime and parameter
passing mechanisms, from PF3, PL4 and PL5. These questions sometimes stand alone
and sometimes are inter-mixed inside of other groupings of questions where the

opportunity presented itself to test topics from these knowledge units.

Question 4 of the exam tests student understanding of the parameterized type
(generics) mechanism. The question presents students with the creation of two data
structures, one using Java generics (parameterized types), the other without generics.
Students are asked to recognize that when an element is removed from a structure that
does not use generics, the type of the object returned is not the type of the object that was

inserted into the collection.

For question 4, consider the following code segment:

java. util.HashMap<l nteger, String> mapOne =
new j ava. util.HashMap<Integer, String>();

java.util.HashMap nmapTwo = new java. util.HashMap();

mapOne. put (1, “First nane”);
mapTwo. put (1, “First nane”);

String s1 = mapOne. get(1);

182 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

String s2 = mapTwo. get (1);

4) Which of the two assignments of “First name” to a String variable does not work
correctly and why? (Circle only one answer). [1 point]

a Assignment to s 1 does not work because get () returnsan Obj ect, nota
String.

b. Assignment to s1 does not work becauses1 isnotaStri ng.

c. Assignment to s 1 does not work because HashMaps cannot usel nt eger s as
keys.

d. Assignment to s2 does not work because get () returnsan Obj ect , not a
String.

e. Assignment to s2 does not work becauses2 isnotaStri ng.

f. Assignment to s2 does not work because HashMaps cannot use | nt eger s as
keys.

g. Neither assignment works because get () returnsan Gbj ect,notaStri ng.

h. Neither assignment works because neither s1 nor s2 isaStri ng.

i. Neither assignment works because HashMaps cannot use | nt eger s askeys.

Questions 47 and 48 of the exam are true-fal se questions that probe the understanding
of the difference between primitive types and object types. While the language might be
skewed towards Java terminology, the idea of the difference between abuilt-in type and
user-defined type is probed, as well as the difference between a primitive type and a

reference type.

47) When we declare a variable whose type is a primitive data type, we are actually
creating areference to a space of allocated memory. [1 point]

a. TRUE

b. FALSE
48) Primitive types are not objects and therefore do not have methods defined on them. [1
point]

a. TRUE

b. FALSE

Question 91 tests to seeif students recognize type mismatch in an expression. For

example, in Java (and many other languages), integer numbers and whole numbers are

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 183

not considered the same type. Often, one cannot assign the result of arithmetic with

floating point numbers to an integer.

Use the following variables and their values to evaluate the expressions given in
guestions 83 - 91. Suppose each expression is executed independently (ie — no later
expression depends on aresult of a previous expression).

int a = 4; double d = 4.5;
int b = 6; double e = 3. 3;
int ¢c = -3; double f = 0.5;

91) The following line of code does not compile (e & b refer back to the previous page).
What do you need to do to get the line of code to work? [4 points]

int z =e * b;

(Circle all answers from the choices below that would make the code compile.)
You need to cast b to be adouble.

You need to cast b to be an integer.

Y ou need to cast e to be an integer.

You need to cast e to be adouble.

You need to cast theresult of e * b to be an integer.

You need to cast theresult of e * b to beadouble.

. You need to make z adouble.

. You need to make z an object.

ST@ o op oW

Questions 104 — 112 have the students |ook at a group of two classes, an interface,
and a class with amain method in it. One of the classes implements the interface and the
other does not. Each class has several methods in it. The class that implements the
interface has an instance variable of type java.awt.Color (areference type). The other
class has two instance variables, one of the type that implements the interface (a
reference type) and one of type int (a primitive type). Various methods are defined that
take either areference type or both as parametersin this class. The Driver class creates

some instances and calls some methods on them.

184

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

Use the following code segment for the classes named Types, Thi ng,and Dri ver , the
interface named Col or abl e, and your knowledge of Javato answer the questions 104 —
112. If the question has multiple choices, you should circle the |etter of the best answer
for each question, unless instructed otherwise.

public interface Col orable {
public void setCol or (java.awt.Col or color);
public java.awt. Col or getColor();

}// Col orabl e

public class Thing inplements Col orabl e{
private java.aw . Col or _color;
public Thing() {

_color = java.awt . Col or. WH TE;
}

public void setCol or (java.awt.Color color) {
_color = color;
}

public java.awt. Col or getColor() {
return _color;

}
}// Thing

public class Types {
private Thing _thing;
private int _nunber;

public Types() {
_thing = new Thing();
_nunber = 0O;
}
public void incrementNunber (int increment) {
_nunber += increnent;
}

}/ I Types

public class Driver {
public Driver() {
int i =5;
Col orable t = new Thi ng();
/ILine for question 109 inserted here
t hi s. changeParans(i, t);

}

public void changeParans (int input, Colorable thing){
i nput = input * 2;
t hi ng. set Col or (j ava. awt . Col or. RED) ;

}

public static void main (String[] args) {
Driver d = new Driver();

}
}//Driver

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 185

Questions 104 and 105 test the students understanding of a null reference and then

what happens after the reference isinitialized to anon-null value.

104) What isthe value of _t hi ng befor e the constructor isrun for the class Types?[1
point]

a. A null reference.

b. A random value assigned value assigned by the compiler.

c. An object of type Thi ng whose instance variables are set to null.

d. _t hi ng does not exist before the constructor is run.

105) What isthe value of _nunber after the constructor isrun for the class Types?[1
point]

a null

b.0

c.-1

d. undefined

Question 106 asks the student to identify in the code the difference between variables

of reference type and primitive type.

106) Which of the variables presented in this code segment are object references? Circle
the letters of al that apply. [5 points]

a _color

b. _thing

c._nunber

d. i ncrenent

e i

f.t

g.i nput

h.t hi ng

i.d

j. None of these variables are references.

k. All of these variables are references.

Questions 107 and 108 test the student’ s knowledge of visibility and scope of

methods and variables inside the code segment.

186

another variable, but the two variables are not of compatible types. The question requires

the student to notice that the variables are of different types and know that this type of

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

107) Which of the members (variables or methods) from the class Types are accessible
from outside the class? Circle the letters of al that apply. [6 points]

a _thing

b. nunber

c. Types() constructor

d.i ncrenent Nurber (i nt i ncrenent) method

e. None of the members are accessible outside of the class.

f. All of the members are accessible outside of the class.

108) Which of the members from the classDr i ver are not local and only accessible
from inside the class? Circle the letters of al that apply. [6 points]

ai

b. t

c.Driver () constructor

d.changeParans(i nt i nput, Col orabl e thing) method

emain(String[] args) method

f. None of the members are only accessible from inside the class.

Question 109 presents a scenario in which one variable isto be assigned the value of

assignment would therefore not be allowed.

109) Suppose we add the following line to the constructor in the space indicated by the
commentsinDri ver : [1 point]
t =i;
Isthisvalid? What would happen?
a. Itisperfectly valid. The codewould run.
b. Itisvalid. Thetypeof i isaprimitiveand t isan object type and you
can always assign a primitive type to any object type because primitives
are subclasses of objects.
c. Thisisnot valid. The code would compile, but would cause arun-time
error.
d. Thisisnot valid. The code would not compile becauset and i are not
of compatible types.

Question 110 relies on this code segment, but actually tests knowledge of inheritance,

which will be discussed in 86.3.7 of this chapter.

110) Under what circumstances would you be allowed to add the following line of code
to the end of the classDr i ver s constructor: [1 point]
t = new O her Thing();

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 187

a. No specia circumstances, this line of code would always work.

b. Only when &t her Thi ng isasubclass of Thi ng.

c. Only when Ot her Thi ng isasuperclass of Thi ng.

d. Thisline of code would never work because the declared type of t is

Thi ng, so you must assign aThi ng objectto t.

Question 111 tests knowledge of what happens to the value of a variable of primitive
type that is passed into a method and then changed in the method. In Java, al parameters

are passed by value, so no change is caused by the change of the value within the method.

111) Looking at the code for Dr i ver , what isthevalue of i after the method

changePar ans hasbeen called? [1 point]
a. Thevaueisunchanged, 5.
b. Thevalueis 2 timesthe value, 10.
c. ThevalueisO because i was never initialized.
d. Thevaluewill be null because you can not change the value of i from

within amethod.

Question 112 asks this same question, but with a variable whose type is areference

type. The same action would cause a change in the value of the variable becauseitisa

reference type.

112) Again looking at the code for Dr i ver , after the method changePar ans has been

called in the constructor, suppose we add the following line of code:
java.aw . Color color = t.getColor();

What would be the value of color? [1 point]
a. java.awt.Color. WHITE
b. java.awt.Color.RED
c. java.awt.Color.PINK

d. null

Questions 113 — 115 also test the student’ s knowledge of reference types. For these

guestions, another code example is given. These questions can be characterized as the

188 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

typical “pointers’ question common when teaching C, C++, or any other language with
pointers. Two variables of a particular type are created and originally point to different
values. The student is asked about their values when they both point to the same value.
Then the value is changed using one of the pointers, and the student is asked what value
the other pointsto. Last, the pointers are redirected to point to different values, and the
student is queried again about the values they point to. This series of questionsis
implemented in Java using references, and therefore classes, but could be easily modified

for pointers (if the language supports them).

For questions 113 - 115, use the following code to help you answer the questions.

public class Ball {
private java.aw . Col or _color;
public Ball() {
_color = java.awt. Col or. GREEN,
}

public java.awt. Col or getColor() {
return _color;
}

public void setColor (java.awt.Color color) {
_color = color;
}

}

public class Driver {
public Driver() {
Ball ball = new Ball();
bal | . set Col or (j ava. awt . Col or . RED) ;

Ball ball2 = new Ball ();
ball 2 = ball; // Question 113 refers up to
//this point

bal | . set Col or (j ava. awt . Col or. BLUE) ;
// Question 114 code
java. awm . Col or questionll4 = ball 2.getColor();
// Questionll4 code

ball2 = new Ball ();
// Question 115 code
bal | 2. set Col or (j ava. awt . Col or. BLACK) ;

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

6.34

This group consists of questions dealing with the various types of data structures
assessed by thisinstrument. It finishes up the topicsin PF3: strings, linked structures,

stacks, queues, hash maps, graphs, trees, and strategies for choosing the right data

// Question 115 code
java. awm . Col or questionll5 = ball.getColor();
// Questionll5 code
}
public static void main(String[] args) {
Driver d = new Driver();

}
}
113) After theline of codein Dri ver that reads
ball2 = ball;
is executed, which reference refersto agreen ball? [1 point]
a. bal |
b. bal | 2
c bothbal | andbal | 2
d neither bal | orbal | 2

114) Focus your attention on the lines of code that is the code for Question 114 as
indicated by comments. What will the value of the variable quest i on114 be?[1
point]

a j ava. awt . Col or. RED

b. j ava. awmt . Col or. GREEN

Cc j ava. awt . Col or. BLUE

d no color — it will be an error

115) Focus your attention on the lines of code that is the code for Question 115 as
indicated by comments. What will the value of the variable quest i on115 be?[1
point]

a. j ava. awt . Col or. RED
b. j ava. awt . Col or . GREEN
C. j ava. awt . Col or. BLUE
d. j ava. awm . Col or. BLACK
Data Structures (Group 4)

189

structure. It aso incorporates some questions on asymptotic analysis and Big O notation

with questions concerning data structures. The topics of hash tables (more accurately,

190 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

hashing) and binary search trees from AL3 are part of this group. Questions about the

topic collection classes and iteration protocols from PL6 are also included in this section.

Question 1 asks the students to construct a binary search tree given the elements to be
inserted. Question 2 asks the students to trace through the search algorithm for binary
search trees. Question 3 asks the students to construct avalid binary search tree once the

root of the given binary search tree has been removed.
1) Draw the binary search tree which results when the following items are inserted, in the
order giveninto an initially empty BST. [8 points]
Elements: 62, 55, 37, 106, 202

Given the following BST, answer questions 2 — 3.

2) You cal search (find) and are looking for the number 32. List of nodes that are visited
while you are determining that 32 is not in the BST. [3 points]

3) You want to delete 34 (the root) from thistree. Show one possible valid binary search
trees that could result from deleting the root. [8 points]

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 191

Question 5 asks students to write code to iterate over a collection of objects using an

iterator and call amethod on each object in a collection.

5) Write the body of the following method named changeCol or s. The method
takesasaparameter, aj ava. util . Col | ecti on of java. am . Col ors. The
changeCol or s method should call the method set Col or (j ava. awt . Col or),
whichisinherited fromj avax. swi ng. JPanel , for each color inthe Col | ecti on
so that the user sees a changing background color for the panel on their program. You
can assume that this method appearsin a class that extends JPanel so you can simply
call theset Col or method from within this method. Y ou must use an iterator/for-each
loop in your solution to this question to receive full credit. [8 points)

voi d changeCol ors(java. util.Collection<java. awt. Col or>
col or sFor Background) {
}

Questions 6 — 8 test the students' knowledge of how indexing of arrays works (i.e., in
Java, that arrays are indexed beginning at 0 and ending at size—1). Question 9 asksthe
students to write code to re-size an array retaining the original el ementsin the array but
giving space to add new elementsinto the array. Question 10 asks students to write code
that creates an array whose elements correspond to the square of the index that the
element is stored at. Question 11 asks the students to write afind method on a two-

dimensiona array.

Assume you have created the following array in a program:
int[] holder = new int[50];

Use this information to answer questions 6 — 9.
6) What is the maximum number of elements that can be stored by hol der ?[1 point]
7) At which index would the first integer in hol der be stored?[1 point]

8) At which index would the last integer in hol der be stored?[1 point]

192

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

9) Asyou are using the array in your program, you find out that you need to store more
than the maximum number of elements you listed in question 8. Y ou do not know how
many more elements you will be storing, just that you need more space in your array.

Y ou are asked to write a method, needMor eSpace that takesin an array and performs
the necessary operations to return a larger array with the same elements as the original,
but with space to store additional elements. Since you don’t know how many elements
you will eventually need to store, you should write the method body so that it could be
called at alater timeif the array needs to get bigger again. [8 points]

public int[] needMoreSpace(int [] original Array) {

}

10) Fill in the method below so that it creates and returns an array of sizesi ze and
populates the array with elements each of whose values is the square of the index at
which the element is stored. For example, at array index 3, the value 9 should be stored.
[8 points]

public int[] arrayOfSquares (int size) {

}

11) Fill in the method below so that it returnst r ue if the value passed in as a parameter
is contained inside the matrix and returns fal se otherwise. [8 points]

public bool ean contai ns(doubl e[][] matrix, double value) {

}

Question 12 gives the design (in UML) for adoubly-linked list and asks the student to

write the code for the delete method of thelist. The UML givenin this question is not

intended to be the testable material. Rather, this question is given in terms of the design

of the code, not necessarily the implementation. Thisis not arequirement of the

guestion, and another expression of design can be substituted for UML, or even the

partially implemented code.

12) Given the following UML diagram for adoubly linked list, fill in the method
del et e below, which isamethod in the List class and takes an element to be deleted
and returns the deleted element when finished. [8 points]

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

Mode
Cormparable _elerment

Mode (Cormparable)
Cormparable getElement)

nid setElement (Cormparable g)
Mode gethlext])

nid setMextiNode n)

Mode getPrev)

nid setPreviNode n)

Notes about the classes in the diagram:

* Node’sconstructor setsthe value of _el ement to the value passed in and setsthe
value of _next and _prev tonul | . The other elements are simple accessors and

== inbenface ==

Comparable

int compareTo(Ohject o);

Mode _next, _prey 5:7//

List

Mode _head

List()

mutatorsfor _el ement, _node, and _prev.

* Node holds an element that implements the interface Conpar abl e. Recall that aclass
that implements this interface has a method named conpar eTo that takesin an
hj ect obj , and returns a positive number if t hi s > obj , thevalue O (zero) if the

two are the same, or anegativevalueif this < obj.

e Li st’sconstructor simply setsthe value of _head tonul | .

publ i c Conparabl e del et e(Conpar abl e el enent) {

}

Questions 13 — 18 test students on their knowledge of basic tree vocabulary: root,

leaf, parent, child, and height of atree.

Use the following representation of a tree data structure to answer questions 13 - 18.

193

194 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

13) What is the value stored in the node that is the root? [1 point]

14) Give the value stored in one of the leaves of this structure. [1 point]

15) What isthe height of atree that just contains aroot and no other nodes? [1 point]
16) What isthe height of this structure? [1 point]

17) Give the value stored in the node that is the parent of n. [1 point]

18) Give the values stored in all the children of m. [3 points]

Question 19 gives students an adjacency list for a graph and asks them to draw the
graph that the adjacency list represents. Questions 20 and 21 test basic graph vocabulary
including: directed, undirected, weighted, unweighted, simple, complete, acyclic,

isomorphic, and adjacent nodes.

19) Given the following adjacency list for a directed graph, draw the graph structure it
represents. [8 points]

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 195

A ——» E > D

B . c

C —— E > D > A
D = g D

E heam F > C

F ——g C

20) Circlethe letters of all of the words that accurately describe the graph above. [4.5
points]

a. directed

b. undirected

c. weighted

d. unweighted

e. simple

f. complete

g. acyclic

h. isomorphic

196

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

i. rooted

21) Circlethe letters corresponding to all the pairs of nodes given that are adjacent in the
above graph. [4 points]

arands

b.tand n

c.dands

d.nandd

Question 22 asks the students to assess which type of implementation (array-based or

link-based) would be a more efficient implementation for alinked structure when using

linear search.

22) If adata structureislinear in nature (list, vector, etc), which implementation would
perform better asymptotically in alinear search. Circle one of the implementations listed:
[1 point]

a. array-based

b. linked list-based

c. neither — they would both perform the same on the linear search.

Question 23 combines knowledge of both inheritance and data structures. Students

are asked why it would be inappropriate for a stack to be a subclass of vector. The data

structures portion of this question is that students must know that a stack isalimited-

access structure and that invariant (property) should be preserved when implementing a

stack. Students must also then be able to identify why using inheritance has the potential

for breaking thisinvariant.

23) Referring to your knowledge of data structures and inheritance, why isit
inappropriate for ajavautil.Stack to be a subclass of java.util.Vector?[8 points)]

Questions 24 — 31 present the student with one of: a definition of a data structure, a

fact about a data structure, or a scenario for using data structures, and asks the students to

sdlect, from alist of data structures, which structure or structures would be the most

appropriate answers for each question.

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 197

From the list of data structures given, choose the best answer or answers for questions 24
—31. If thereis no appropriate answer, write “None”. If you feel that more than one
answer is appropriate, list al appropriate answers. It is possible that some answers from
the box will not be used.

Linked List Array
Graph Stack
Tree Queue
Hash Map

24) Structure that associates a key with avalue. [6 points]

25) Structure whose insertion/removal strategy can be defined as LIFO. [6 points]
26) Structure whose insertion/removal strategy can be defined as FIFO. [6 points]
27) Structure that is non-linear. [6 points]

28) Structure whose elements are always stored in a contiguous block of memory. [6
points]

29) You are creating software for acall center that does technical support. Technicians
are supposed to answer callsin the order they are received. What structure would be best
for keeping track of which call should be answered next? [6 points]

30) Y our company has decided to create a program to help cell-phone customers
everywhere. It isan on-line program that allows the user to type a person’s name and
will return alist of al cell phone numbers registered to them. Y ou are asked to
recommend a structure to hold onto the information. Which structure would you
recommend? [6 points]

31) You are working for a brand new on-line mapping company. This company needs to
maintain information about locations and roads that connect them so that it can tell
customers about various routes between locations. What type of structure would be best
for them to use to store their information? [6 points]

Question 40 asks students to identify the running time of a hashing function.
Question 41 and 42 presents students with code for two different types of insertion into a

linked list and asks them to identify the running time of each insertion.

40) If your hashing function worked every time with no collisions, what would be the
running time of a method to find an element in a hash table of size n?[1 point]

198

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

a O(1)
b. O(log n)
c. O(n)
d. o(n?)

Use the code for anode and linked list given below to answer questions 41 and 42.
Please note that some methods from both classes may have been removed if they do not
pertain to the questions.

public class Node<E> {
private E data;
private Node<E> next;

publi ¢ Node<E> (E el ement, Node next Node) {
dat a el ement ;
next next Node;

}
public void set Next (Node next Node) { next = nextNode; }

}

public class LinkedList<E>
private Node<E> head = null;
private Node<E> tail = null;
public LinkedList() {}
public void insert (E element) {
Node<E> newNode = new Node(el ement, null);
tail.set Next (newNode);
tail = newNode;
}
public void insertAtFront(E el enent) ({
Node<E> newHead = new Node(el ement, head);
head = newHead;
}
}
41) What isthe big-oh running time of the LinkedList’s method insert in the worst case?
[1 point]
a O(1)
b. O(log n)
c. O(n)
d. o(n?)

42) What is the big-oh running time of the LinkedList’s method insertAtFront in the
worst case? [1 point]

a 0(1)

b. O(log n)

c. O(n)

d. O(r?)

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 199

Question 50 tests to seeif students understand that an array is simply a container and

can hold any type of data (not just primitive typed data). It is atrue-false question.

50) We can create an array to hold elements of primitive types (int, char, double, etc), but
to hold elements of object type, we must use another type of data structure. [1 point]

a. TRUE
b. FALSE

6.3.5 Recursion (Group 5)

This group of questions assesses the entirety of the topicsin PF4 Recursion.

Question 39 asks students to identify which of the six algorithms listed use adivide-

and-conguer strategy in implementations.

39) Circleany and all of the following algorithms that use a divide and conquer strategy
to perform their specific task. 1f none of the listed algorithms use a divide and conquer
strategy, circle choice F. [6 points]

a Linear Search

b. Quicksort

c. Mergesort

d. Insertion Sort

€. Selection Sort

f. None of the above.

Question 51 asks students to identify, out of a series of examples of processes, which
arerecursive. Questions 52 — 56 present two methods to the students, one recursive and
one not. The students are then asked to evaluate the two methods on various inputs. On
some inputs the methods behave the same, but on others they do not. Question 56 asks

students to select under which conditions the methods execute differently. These

200 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

guestions involve the students tracing through a recursive procedure and understanding

how it functions.

51) Parts a— d describe four procedures in code and through words. Circle the letter of
each procedure that can be categorized as recursive. [4 points]

a
public int partA(Object[] itens, Conparable x,int y,int z){
ity >2z){
return -1;
}
el se {
int a=(y+2z)/2
int b = x.conpareTo(itens[a]);
if (b ==0) {
return a;
}
else if (b <0) {
return partA(itenms, x, y, a — 1);
}
el se {
return partA(itenms, x, a + 1, 2z);
}
}
}
b.
public int partB(int x) {
int r = x;
r =r [/ 30;
Mat h. power (x, 2);
return Xx;
}
C.
public int partC (int x) {
int y =0;
for (int i =0; i < x; i++) {
y =y +i
}
return vy;

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 201

d.
Procedure for Witing Down Nanes of People Waiting in line
for Movie Tickets:

1) If line is enpty go back to office.
2) If line is not enpty:

a. Walk up to first person in |line and ask for
t hei r nane.

b. Wite nanme on official sheet and give
partici pant free popcorn coupon.

c. Move person to “fast pass” line for tickets.
d. Begi n Procedure for Witing Down Nanes of

Peopl e Waiting in line for Movie Tickets again.

Use the following code segment to answer questions 52 —56. Some of the questions ask
about the output of a method on a particular input. If the method goesinto an infinite
loop or infinite recursion on an input, write “infinite loop” as your answer.

public int nethodl (int x, int y) {

if (y ==0) {
return 1;
}
el se {
return x * methodl(x, y — 1);
}

}

public int nethod2 (int x, int y) {
int result = 1;
for (int i =0; i <vy; i++) {
result = result * x;
}

return result;

52) What is the value returned from the following method call: [1 point]
met hod1(2, 1) ;

53) What is the value returned from the following method call: [1 point]
met hod2(2, 2);

54) What is the value returned from the following method call: [1 point]
met hod2(2, -5);

55) What is the value returned from the following method call: [1 point]
met hod1(2, - 3);

202 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

56) These methods function differently on different inputs. On which class of inputs do
these methods behave differently (circle all that apply)? [5 points]

a. When both x and y are positive numbers.

b. When both x and y are the number O (zero).
¢. When both x and y are negative numbers.
d. When x is positive and y is negative.

e. When x isnegative and y is positive.

f. When x iszero and y is positive.

g. When x iszero and y is negative.

h. When x is positiveand y is zero.

i. When x isnegativeand y is zero.

j. The methods never function differently.

Questions 57 — 58 present the mathematical definition of a recursive sequence (the
Lucas sequence). Students are not expected to have had previous experience with the
Lucas sequence. The recursive definition of the sequenceis given to the students to aid
them in answering this question. Students are asked to identify from the definition which
are base cases and which are recursive cases. Question 59 then asks the students to create

arecursive method that gives the nth element of the Lucas sequence.

Given the following definition of the Lucas sequence, answer questions 57 — 59.
L(1) =1;
L(2)=3;
L(n)=L(n-1)+L(n—-2) forn>2
57) State what the base case(s) is/are for the Lucas sequence. [4 points]
58) State what the recursive case is for the Lucas sequence. [4 points]
59) Write the Java code for a recursive method that takes as a parameter an integer n and

returns the n™ element of the Lucas sequence. You can assume that n will always be a
number greater than zero. [8 points]

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 203

6.3.6 Sear ching and Sorting Algorithms, and Algorithm Analysis
(Group 6)

This group covers al of thetopicsin AL1 Basic Algorithmic Analysis as well asthe
rest of the topicsin AL3 concerning searching and sorting algorithms. Any question that
concerns Big O™ notation isincluded in this group as well as questions that ask about

searching and sorting algorithms.

Questions 32 — 37 give alist of common searching and sorting algorithms and ask
students to identify all valid Big O bounds on the worst case running time of each of the
algorithms. Question 38 asks the students to identify which of the sorting and searching

algorithms function correctly only on sorted inputs (the only oneis binary search).

In questions 32—37 you are given an algorithm for sorting or searching. You areto circle
any and all valid big-oh bounds on the worst-case performance of each of the algorithms
listed.

32) Binary Search [6 points]
a 01 b. O(log n) c. O(n) d.O(nlogn) e. (M) f. O(2"

33) Linear Search [6 points]
a 01 b. O(log n) c.O(n) d.O(nlogn) e. O(M) f. 02"

34) Selection Sort [6 points]
a O(1) b. O(log n) c.O(n) d.O(nlogn) e. O(n%) f. O(2"

35) Insertion Sort [6 points]
a O(1) b. O(log n) c.O(n) d.O(nlogn) e. O(n%) f. O(2"

36) Quicksort [6 points]
a 01 b. O(log n) c. O(n) d.O(nlogn) e. O(M) f. O(2"

37) Mergesort [6 points]

¥ In the text of this dissertation, | use Big O to describe the asymptotic running time. In the exam, it is
referred to as big-oh running time. They should be taken to mean the same thing. Since the exam has
aready been written and administered, it isleft in that form for the dissertation, even though it is
inconsistent with the dissertation wording.

204

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

a O(1) b. O(log n) c. O(n) d.O(nlogn) e. O(n%) f. O(2"

38) Circleany and all of the following algorithms that only function correctly on sorted
inputs. 1f none of the algorithms require sorted inputs to function correctly, circle choice
F. [6 points]

a. Binary Search

b. Linear Search

c. Selection Sort

d. Quicksort

e. Mergesort

f. None of the above.

Questions 40 — 42 ask about the running time of methods on data structures, which fit

both into the section on data structures 86.3.4 as well as this section because they deal

with Big O notation. See 86.3.4 for these questions.

Questions 43 and 44 are true-fal se questions about Big O. Students are given a

mathematical function and its Big O bound and asked to indicate whether the statement is

true or false (i.e, if the Big O bound is correct). If the statement is false, the students are

asked to correct the Big O of the statement so that it would be correct. Question 46is

another true-false question that requires that the student know that upper bounds on the

growth of afunction are transitive.

For questions 43 - 44, decide whether the statement is true or false and circle the
appropriate word true or false. If the statement is false, rewrite the big-oh notation so that
it would be true in the space provided.

43) n® + 2n + 25 = O(n) [3 points]
true false
Rewritten statement (if false):

44) n? + 30n + 4362 = O(n?) [3 points]
true fase
Rewritten statement (if false):

46) If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n)). [1 point]
a. TRUE

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 205

b. FALSE
Question 45 asks the students to arrange a set of functions in order from slowest
growing to fastest growing. The functions represent the basic levels of complexity of

n

dgorithms: 1, logn, n, n?, 2", n!, n".

45) Arrange the following functions in order from slowest growing to fastest growing. [7
points]
n,n!,n? logn, 1, 2" n

n

6.3.7 Object-Oriented Programming (Group 7)

Thetopicsin this group are those covered from PL6. There are no specific questions
about encapsulation or information hiding. However, every class that uses private
instance variables and public methods, especialy those in the questions about data
structures, illustrates this concept. The students are not directly tested on their ability to
re-create encapsulation, but they need to understand the concept in order to answer any

guestion where the code usesiit.

Question 23 straddles two groups. Itsfirst group was data structures, and the other is
object-oriented programming. Students must be aware of the implications of inheritance

to correctly answer the question about why Stack should not inherit from Vector.

23) Referring to your knowledge of data structures and inheritance, why isit
inappropriate for ajava.util.Stack to be a subclass of java.util.Vector? [8 points]

Question 49 is atrue-false question testing student’ s knowledge of inheritance and

polymorphism. Question 110, which is sandwiched inside a set of questions that are from

206 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

Group 3, tests students knowledge of the difference between the declared type and the
actual type of avariable, which is acomponent of understanding how inheritance and
polymorphism work together. This question fits in with the code example used in that

part of the exam, so was included in that section, but really tests ideas from this group.

49) Suppose Triangle, Circle, and Square are all subclasses of Shape. In our program, we
create an array that stores objects of type Triangle. That array can hold any number of
Circles, Squares, and Triangles because they are all subclasses of Shape. [1 point]

a. TRUE

b. FALSE

110) Under what circumstances would you be allowed to add the following line of code
to the end of the classDr i ver ’s constructor: [1 point]
t = new O her Thing();
a No special circumstances, this line of code would always work.
b. Only when Ot her Thi ng isasubclass of Thi ng.
c. Only when O her Thi ng isasuperclassof Thi ng.
d. Thisline of code would never work because the declared type of t isThi ng,
S0 you must assign a Thi ng objectto t.

Questions 116 — 127 are based on a system of classes and interfaces that is first
illustrated using a UML diagram and then given in code. Students need to analyze these
classes to answer the questions. Questions 116 — 125 give the students a set of variable
declarations. Some of the variables have a different declared type and actua type, once
again the setup for polymorphism. These questions ask students to identify which
methods are allowed to be called on avariable and which methods will be executed if the
call islegal. Question 126 asks students to identify methods that are inherited within the
class structure, and Question 127 asks students to identify if amethod is partially

overridden or totally overridden in the code example.

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

Usethe UML diagram given below as well as the code segment given after the diagram
to answer gquestions 116 — 127.

=< interdace ==

Colorable

java.awt. Color getColord)
oid setColor{java.awt Color colorn)

java.awt Color

=)

IDCARP app, Puppy puppy)
App W
Animal

0o o
oid setiD(D id)
<tatic void main(String[] args) ko anirnald

L nirnal(Toy) : oid doSornething()

[[Toy getToy() oid dorMothingd)

: oid somethingShouldHappeny ~ =7pioid setColor(ava.awt.Color color)
: : java.awt.Color getColord
| i

: i |

I Fuppy |

1| JHouble weight i

] 1

] I

i |Puppy (double) :

: nid doSomethingwithThisGolorgava.awt Color colory ||

: 0id somethingShouldHappend) :

[1
. ':

/* The cl asses given below were witten for the purposes of
* this exam In reality, they would each be in their own
* separate file, but are reprinted here as one long file
* for ease of reading. This “print-out” spans two pages,
* so please | ook at both pages while answering the
* foll ow ng questions.

*

/

public class App {

private Puppy _puppy;

private ID _id;

public App (){
Systemout.println("App constructor called.");
_buppy = new Puppy(new Toy());
this.setlD(new I D(this, _puppy));
Systemout. println("App constructor end.");

}

public void setID(IDid) {
_id =id;

}

public static void main (String[] args) {

App app = new App();
} /1 end of main ()

Y1 App

207

208 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

public interface Col orable {
java. awt . Col or getCol or();
voi d set Col or (j ava. awt . Col or col or);
}// Col orable

public class ID inplenents Col orabl e{

private Animal _animal;

private java.aw . Col or _color;

public ID (App app, Aninmal animl){
_animal = ani nal ;
_color = java. awt . Col or. BLACK;

}

public java.awt.Col or getColor() {
return _color;

}

public void setColor(java.awm. Color color) {
_color = color;
}

}// 1D

public class Animal {
private Toy _toy;
public Animal (){ _toy = new Toy(); }
public Animal (Toy toy) { _toy = toy; }
protected Toy getToy() { return _toy; }
public voi d sonet hi ngShoul dHappen() {
_toy.doSoret hi ng();

}
Y/ Ani mal

public class Puppy extends Aninal{

public Puppy() {}
public Puppy (Toy toy){
super (toy);
t hi s. doSoret hi ngW t hThi sCol or (t hi s. get Toy()
.getColor());

}
public void doSonet hi ngWt hThi sCol or
(java. awt . Col or color){
this.getToy().set Col or(col or.darker());
}
public void sonethi ngShoul dHappen() {
super . sonet hi ngShoul dHappen() ;
thi s. get Toy(). doNot hi ng();
}
Y/ Puppy

public class Toy {
private java.awt . Col or _col or;
private String[] _sounds;
public Toy (){ _color = java.awt. Col or. RED; }

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 209

public void setColor(java.awm. Col or color) {
_color = color;
}

public java.awt.Color getColor() { return _color; }
public void doSonething() {
_sounds = new String[20];
for (int count = 0; count <_sounds.length; count++){
_sounds[count] = "Squeak";
} /1 end of for ()
System out . println(_sounds);
}
public void doNothing() ({
/1 This method really does not hing.

}
}/1 Toy

For questions 116 — 125, assume the following variable declarations. Note that any
ellipses (...) indicates material that will not affect your answer to the question and can be
safely ignored. For each of the method callsin questions 116 - 125, you should circle the
name of the class/interface that defines the method that will be executed for the method
call. If thecal islllegal, circle the choice that correspondsto “Illegal”.

Colorable ¢ = new I D(.);
Ani mal ani mal = new Puppy();

Puppy puppy = new Puppy();

116) c. get Col or () ; [1 point]
App

Animal

Puppy

. Colorable

ID

Toy

Illega

@roo0o

117) c. set Col or(..); [1point]
App

Animal

Puppy

. Colorable

ID

Toy

. lllega

@ roop o

118) c. set I D(); [1 point]
a App

b. Anima

c. Puppy

d. Colorable

e ID

210

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

f. Toy
g. lllega

119) ani mal . get Toy(); [1 point]
App

Animal

Puppy

. Colorable

ID

Toy

Illega

@00 ow

120) ani mal . sonet hi ngShoul dHappen(); [1point]

App
Anima

Puppy

. Colorable
ID

Toy

Illega

@roo0ow

121) ani mal . doSonet hi ngW t hThi sCol or(..); [1point]
App

Animal

Puppy

. Colorable

ID

Toy

llegal

@ oo

122) puppy. sonet hi ngShoul dHappen() ; [1 point]

App
Anima

Puppy

. Colorable
ID

Toy

Ilegal

@roo0oe

123) puppy. doSonet hi ngW t hThi sCol or (..); [1point]
App
Animal

Puppy

. Colorable
ID

Toy

Illega

@roo0ow

124) puppy. get Toy(); [1point]
a App
b. Anima

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 211

Puppy
. Colorable

ID
Toy
Illega

Q@ "0 a0

125) puppy. get Col or () ; [1 point]
App

Animal

Puppy

. Colorable

ID

Toy

llegal

@roo0ow

Recall that questions 126 — 127 till refer to the UML diagram and code used for
questions 116-125.

126) Circle the names of all methods that are simply inherited (not overridden) by
some other class. If no methods are inherited, circle the choice that corresponds to
“None”. [6 points]
void main (String[] args) //in class App
. void setColor(java.awt.Color color) //in class ID
Animal () //in class Animal
. Animal (Toy toy) //in class Animal
Toy getToy() //in class Animal
void somethingShouldHappen() //in class Animal
Puppy () //in class Puppy
Puppy (Toy toy) //in class Puppy
void somethingShouldHappen() //in class Puppy
void doSomethingWithThisColor(java.awt.Color color) //in class Puppy
. void setColor(java.awt.Color color) //in class Toy
None

AT SQ D0 TR

127) Isthe method sonet hi ngShoul dHappen inthe class Puppy partialy
overridden or totally overridden? [1 point]
a. Partially overridden

b. Totally overridden

6.4 Critique of the Exam

The exam underwent three distinct rounds of critique by atotal of five distinct
reviewers at two different institutions (one public, one private). Some of the reviewers
reviewed the exam multiple times. All critiques were completed before the data

collection began for the study described in Chapters 7 and 8 of this dissertation.

212 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

In the first critique, the initial question pool was narrowed to a more reasonable
number of questions for the three-hour time limit by eliminating duplicate questions.
After thisround of critique, | solicited the help of three of my current teaching assistants
to simulate an exam administration. While the teaching assistants are not introductory
level students, they were each able to complete the exam in under two hours, which gave
meinitial confidence that students would be able to complete the exam in the time

allotted.

In the second critique, instructors for the CS2 course in which the exam was to be
offered as the final exam gave their commentary on its contents. Some additional
guestions were removed at this stage, others were reformatted, and grammatical and

spelling mistakes were corrected.

In the third and final critique, instructors from outside the course were asked for an
independent analysis of the exam. Three instructors, who had all been involved in
teaching CS2 at some point in the recent past but were not teaching the course when the
study was administered, were asked to give general commentary on the exam and answer
the questions on the reviewer questionnaire (see Appendix C of this dissertation).
Comments were considered and questions changed appropriately to clarify directions and

any additional spelling and grammatical errors.

CHAPTER 6 CREATION AND CRITIQUE OF EXAM 213

6.5 Conclusion

This chapter discussed the creation of the exam and how the exam covers all of the
topicsleft in our topic list after the elimination of topics discussed in Chapter 4. This
chapter also discussed the process by which the exam was reviewed for content by
domain experts. The comments and critiques of these experts were taken under
consideration when creating the final version of the exam and many suggestions were

implemented based on reviewer feedback.

Aside from issues with question particulars, which were either addressed, or
discussion given as to why the suggestions were ignored, the reviewers felt that the exam
had the correct level of difficulty for the students and that content was comprehensive

enough for a CS1-CS2 assessment.

The only major issue that has come up repeatedly from most of the reviewers has
been length. The issue of length is addressed in the analysis chapter (Chapter 8) as part
of the administration process for this exam was a recording of the time to completion for

each student.

6.6 Coding of Questionson Exam

The following table gives an alternate view of the categorization of the questions on
the exam in the order that the questions appear on the exam and which section of this

chapter discusses these questions.

214 CHAPTER 6 CREATION AND CRITIQUE OF EXAM
Question Brief Description Section
Number

1 BST Insert 6.3.4
2 BST Find 6.3.4
3 BST Delete Root 6.3.4
4 Collection with generic type 6.3.3
5 Iterating over a collection 6.3.4
6 Array indexing 6.3.4
7 Array indexing 6.3.4
8 Array indexing 6.34
9 Array re-sizing 6.3.4
10 Creating and populating an array 6.3.4
11 Searching a two-dimensional array 6.3.4
12 Deletion from a doubly-linked list 6.3.4
13 Tree vocabulary 6.3.4
14 Treevocabulary 6.34
15 Tree vocabulary 6.3.4
16 Tree vocabulary 6.3.4
17 Tree vocabulary 6.3.4
18 Treevocabulary 6.3.4
19 Graph representations 6.34
20 Graph vocabulary 6.3.4
21 Graph vocabulary 6.3.4
22 Running time based on implementation of data structure 6.3.4,6.3.6
23 Why should a stack not inherit from a vector? 6.3.4,6.3.7
24 Choose the most appropriate data structure 6.3.4
25 Choose the most appropriate data structure 6.3.4
26 Choose the most appropriate data structure 6.3.4
27 Choose the most appropriate data structure 6.3.4
28 Choose the most appropriate data structure 6.3.4
29 Choose the most appropriate data structure 6.3.4
30 Choose the most appropriate data structure 6.3.4
31 Choose the most appropriate data structure 6.3.4
32 Algorithmic running time 6.3.6
33 Algorithmic running time 6.3.6
34 Algorithmic running time 6.3.6
35 Algorithmic running time 6.3.6
36 Algorithmic running time 6.3.6
37 Algorithmic running time 6.3.6
38 Conditions for correct algorithm function 6.3.6
39 Divide and conquer strategy 6.3.5
40 Hashing function running time 6.3.4,6.3.6
41 Analysis of linked list function running time 6.3.4,6.3.6
42 Analysis of linked list function running time 6.3.4,6.3.6
43 Big O notation 6.3.6

CHAPTER 6 CREATION AND CRITIQUE OF EXAM

215

44 Big O notation 6.3.6
45 Common complexity classes 6.3.6
46 Big O notation 6.3.6
47 Primitive types 6.3.3
48 Primitive types 6.3.3
49 I nheritance 6.3.7
50 Arrays 6.34
51 I dentifying recursion 6.3.5
52 Tracing recursive methods 6.3.5
53 Tracing recursive methods 6.3.5
54 Tracing recursive methods 6.3.5
55 Tracing recursive methods 6.3.5
56 Tracing recursive methods 6.3.5
57 Recognizing base case of recursion 6.3.5
58 Recognizing recursive case of recursion 6.3.5
59 Writing arecursive function 6.3.5
60 Programming vocabulary 6.3.1
61 Programming vocabulary 6.3.1
62 Programming vocabulary 6.3.1
63 Programming vocabulary 6.3.1
64 Programming vocabulary 6.3.1
65 Programming vocabulary 6.3.1
66 Programming vocabulary 6.3.1
67 Programming vocabulary 6.3.1
68 Programming vocabulary 6.3.1
69 Programming vocabulary 6.3.1
70 Programming vocabulary 6.3.1
71 Programming vocabulary 6.3.1
72 Programming vocabulary 6.3.1
73 Programming vocabulary 6.3.1
74 Programming vocabulary 6.3.1
75 Programming vocabulary 6.3.1
76 Programming vocabulary 6.3.1
77 Programming vocabulary 6.3.1
78 Programming vocabulary 6.3.1
79 Parameter passing mechanisms 6.3.2
80 Parameter passing mechanisms 6.3.2
81 Parameter passing mechanisms 6.3.2
82 Parameter passing mechanisms 6.3.2
83 Arithmetic/logical expression evaluation 6.3.2
84 Arithmetic/logical expression evaluation 6.3.2
85 Arithmetic/logical expression evaluation 6.3.2
86 Arithmetic/logical expression evaluation 6.3.2
87 Arithmetic/logical expression evaluation 6.3.2

216 CHAPTER 6 CREATION AND CRITIQUE OF EXAM

88 Arithmetic/logical expression evaluation 6.3.2
89 Arithmetic/logical expression evaluation 6.3.2
20 Arithmetic/logical expression evaluation 6.3.2
91 Typecasting/type checking 6.3.3
92 Simple numeric algorithms 6.3.2
93 Simple numeric algorithms 6.3.2
94 Selection using conditionals 6.3.2
95 Selection using conditionals 6.3.2
96 Selection using conditionals 6.3.2
97 Iteration using loops 6.3.2
98 Iteration using loops 6.3.2
99 Iteration using loops 6.3.2
100 Iteration using loops 6.3.2
101 String processing, loops, conditionals 6.3.2
102 String processing, loops, conditionals 6.3.2
103 String processing, loops, conditionals 6.3.2
104 Reference types 6.3.3
105 Reference types 6.3.3
106 Reference types 6.3.3
107 Visibility/scope 6.3.3
108 Visihility/scope 6.3.3
109 Type incompatibility 6.3.3
110 Inheritance 6.3.7
111 Parameter passing mechanisms 6.3.3
112 Parameter passing mechanisms 6.3.3
113 Pointers and references 6.3.3
114 Pointers and references 6.3.3
115 Pointers and references 6.3.3
116 I nheritance/Polymorphism 6.3.7
117 I nheritance/Polymorphism 6.3.7
118 I nheritance/Polymorphism 6.3.7
119 I nheritance/Polymorphism 6.3.7
120 I nheritance/Polymorphism 6.3.7
121 I nheritance/Polymorphism 6.3.7
122 I nheritance/Polymorphism 6.3.7
123 I nheritance/Polymorphism 6.3.7
124 I nheritance/Polymorphism 6.3.7
125 I nheritance/Polymorphism 6.3.7
126 Inheritance, overriding 6.3.7
127 Inheritance, overriding 6.3.7

Table 6-2: Categorization of Questions on Exam

Chapter 7

Exam Administration and Grading

This chapter will discuss the administration of the exam, the procedures followed

during the data collection process and the grading process for the exam.

7.1 General Exam Administration Guidelines

The exam is a closed-book, closed-notes, closed-neighbor (i.e., not collaborative)
exam designed to be administered at the end of the CS2 semester. No electronic devices
should be used while completing this exam. It is assumed that most institutions have
some mechanism in place for end-of-the-semester final exams. The exam is designed to
be given in athree-hour time block, but designed for students to be able to finishin two
hours alowing an extra hour for students to have extratime to think about the problems

and not fedl rushed.

Students are given an exam booklet and an answer booklet; al answers should be
written only in the answer booklet. Students should be instructed that answers writtenin

the test booklet that are not also in the answer booklet will not be graded.

217

218 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

Aswith any exam, an appropriate number of exam administrators should monitor the
exam. Thisnumber should be dictated by the common practices of the institution and the
number of students that will be taking the exam at one time. Exam administratorsin the
exam room should be familiar with the exam itself so as to be able to answer questions
that may be asked by the students. Under no circumstances should answers to questions
be provided to the students by exam administrators. However, student questions about
where to write answers to questions and what type of answer (code, prose, etc.) should be
answered, provided that the answers given do not provide the student with the answer to a

particular question.

It is common practice at our ingtitution to allow students to leave an exam room as
soon as they have completed the exam. Thisis not a necessary component of the exam

administration process but is allowed if it is common at the institution of administration.

When a student has compl eted the exam, it is recommended that the exam
administrators collect both the exam booklet and the answer booklet from the student and
not allow them to remove any exam materials from the exam room. Thisisto help
permit the reuse of the exam in subsequent semesters, because there will be no copies of
the questions avail able outside of the exam room. It is not recommended that the exam
be reused in its current form across multiple semesters, but rather versioned to change the
guestions slightly in each semester. For example, in the computation questions, change
values of variables, switch the order of answers for multiple choice questions, and flip

some of the values of the true-false questions.

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 219

After all students have completed the exam, the exams should be graded using the
grading procedures outlined in this chapter. The exam has 127 questions and is graded
out of 354 points. A student’s percentage scores are achieved by dividing their total
number of points earned by 354 and multiplying by 100. In aparticular version of the
CS1-CS2 sequence at a particular institution, certain topics that are covered by this exam
may not have been covered in the CS1-CS2 sequence. Exam administrators can choose
not to consider certain questions from the exam in final grading for that particular exam
administration. However, if the exam is to be used as a benchmarking or comparison

tool, the same questions must be considered for subsequent administrations of the exam.

The administrations of this exam so far have been for data gathering and statistical -
analysis purposes, so students were instructed to answer all questions to the best of their
ability. After the exam was finished, the instructors for the individual CS2 courses
decided which questions would and would not be counted toward the student’ s final
exam grade. However, it is also reasonable to alow an instructor to tell the students
ahead of time to skip certain questions on the exam. Still another option isto reprint the

exam with those questions removed.

In any case, which questions are analyzed for a particular administration of the exam
isup to theindividua instructors. However, the need to remove questions should
indicate to instructors that there is material missing from their CS1-CS2 sequencein

relation to the guidelines given in CC2001. There are very few redundant questions on

220 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

this exam because many of the repeated questions were removed during critique to help

make the exam shorter.

7.2 Grading Procedure Development

Thereislittle dispute that arubric for grading is essential for ensuring consistency of
test scores for questions that are subjective. Such arubric should specify how the
guestions should be graded and what weighting (if any) certain questions should be given
over others. In any question that is not multiple-choice or true-false, where the student
has the opportunity to express the answer in his or her own words, the rating of the

response must be interpreted by the rater.

In an article about grading essay assignmentsin a computer ethics course, Moskal,
Miller, and King (2002) give examples of arubric for grading student essays and give
their recommendation that a rubric helps to better define the way an answer should be
graded. McCauley (2003) also praises the use of arubric that gives a clear description of
what a particular grading criterion is aswell as the level to which the student should
demonstrate proficiency with that criterion (i.e., should partial credit be awarded, and, if
so, how should that credit be determined?). Walker (2000) weighsin on the grading
debate, with a discussion of how important grading is, but also how time consuming
grading computer science questions can be as evidenced by published results of how
many AP Computer Science exams are graded in a specific time period as opposed to

other AP exams.

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 221

Therefore, it is evident that the creation of the grading rubric and the grading of the
exam itself are just as important as the creation of the questions for the exam. The
grading guidelineis reprinted as Appendix B of this dissertation. In this chapter, a

discussion of the grading specifics beginsin 87.2.3.

721 Multiple Choice Questions
7211 Questionswith Only One Answer

Questions that were given multiple choicesin any way (i.e., traditional multiple
choice questions or true-fal se questions) where only one choice was required to be circled
were treated as the easiest category to grade. Since there is only one correct answer out
of a given number of choices (and the students would know this from reading the
guestion), the answers that a student gives for that question were either correct or
incorrect. These questions are categorized in the grading guideline as MC1A: multiple
choice questions that have only one correct answer. Thisdistinction is given to the
following 30 questions (24% of the exam). The questions are: 4, 22, 40-42, 46-50, 104-

105, 109-125, and 127.

7.2.1.2 Questionswith Morethan One Answer

There are questions on the exam where multiple choices are given, but the student is
expected to indicate all that are correct from the list of choices given for that question. In

these questions, all correct answers must be indicated for the entire answer to be correct.

222 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

These questions are categorized in the grading guidelineas MCMA: multiple choice
guestions that can have multiple correct answers. Thisdistinction is given to the
following 17 questions (13% of the exam): 20 - 21, 32 - 39, 51, 56, 91, 106 - 108, and

126.

1.2.2 Non-Multiple Choice Questions
7.22.1 Objective Free-Response Questions— One Answer

A number of questions on the exam do not give the students choices for their answers,
yet have clearly correct answers. For example, questions that ask the students to state
what is printed to the screen when an expression is evaluated generally have one answer.
The questions like this on the exam are constructed in such away so that thereisa
definite correct answer. The answers to these questions are not based on student
impression or the methodol ogy that the student uses to solve the question, as can be the
case with essay questions or questions that ask the student to write source code to

perform a specific function.

These questions are categorized in the grading guideline as FR1A: free response (i.e.,
no choices given) with only one correct answer. Thisdistinction is given to the following

32 questions (25% of the exam): 6 - 8, 13 - 16, 52 - 55, 79 - 90, and 92 - 100.

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 223

7.2.2.2 Objective Free-Response Questions— Complex Answer

There is also aset of questions on the exam where choices are not given, but the
answers are not simply one-word or one-statement answers. These answers at times
require several itemsin aparticular order, or the identification of multipleitems. The
other type of question that is lumped in this category are those that ask students to
identify the parts of code from a given code segment. These types of questions have
answers that are not as simple as one-word answers, but still are not as subjective as the

guestions discussed in the next section.

These questions are categorized in the grading guideline as FRCA: free response
(i.e., no choices given) with possibly more than one correct answer. Thisdistinctionis

given to the following 33 questions (26% of the exam): 1-3, 18-19, 24-31, 45, and 60-78.

7.2.2.3 Subjective Free-Response Questions

Thelast set of questions is arguably the most difficult to grade. These questions
reguire the students to either write an explanation of an answer to a question (a short-
answer-style essay) or to write source code to solve a particular problem. These
guestions will most likely be the questions that take the students the longest to finish and
take the most time in the grading process and also subject to the most variability on the

part of the raters of the exam.

These questions are categorized in the grading guideline as SG: subjective grading.

There are not necessarily definitively correct answers for the questions, and they require

224 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

that the raters read a more complex grading rubric for how to assign credit for each
question. Thisdistinction is given to the following 14 questions (11% of the exam): 5, 9

-12, 23,43 - 44,57 - 59, and 101 - 103.

7.2.3 Weighting of Questions

The point weight for each of the questionsis greatly determined by which type of
guestion category they fall into. Questions that require the student to pick one answer out
of alist of choices are considered for the purposes of this assessment to be worth less
than questions that require the student to produce code as an answer to a question. | have
always viewed the act of writing code to solve a problem to be more difficult than
analyzing a pre-existing piece of code. | would relate it to the fact that we can find many
people who are good readers of written work but far fewer who are good writers.
Forming a solution in a programming language requires a synthesis of the information

known about the language itself as well as the problem.

However, this high-level distinction of more points for code-writing questions and
fewer points for multiple-choice questions istoo coarse for thisexam. A finer-grained
distinction can be made by looking at the types of questions grouped as described in
§7.2.1 and 87.2.2. Even within the multiple-choice questions, there are questions that
require the students to pick out one answer (MC1A) or decide for each choice if the
choice is acorrect answer for that question (MCMA). Therefore, it was decided that

guestions that MC1A questions would be weighted as 1 point on the exam. MCMA

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 225

guestions would be weighted so that each answer choice was worth 1 point on the exam,
in effect, treating each answer choice as its own mini-question. For example, if there are
five choices for a question where only oneis correct, and the student selects the wrong

one, the student has effectively gotten two answers incorrect and three answers correct.

Free response questions that only have one answer were considered to be in the same
category as single answer multiple choice questions and were then weighted as 1 point

per question.

Free response questions that have a more complex answer (FRCA) were considered
more difficult than the previous types of questions and were given a weighting to reflect
thisleve of difficulty. The default weighting for these questions was 8 points each. The
decision for 8 points was partially arbitrary, but partially motivated by the fact that points
on aquestion could be broken into groups each worth either 2 points or 4 points. Also, it
stresses the fact that these questions are considered of greater difficulty than other
questions on the exam®. However, certain questions necessitated a deviation from this

point system. The special caseswill be explained in more detail in the next section.

Questions for which students needed to write code were considered to be as difficult

as FRCA guestions and were given the same weighting, 8 points each.

% Arguably, this method of assigning harder questions to be worth more points could be considered unfair
to the students. Since the question is harder, it is more likely that the students will get the question wrong
and therefore lose alarger number of points. If the harder questions were weighted the same as the easier
guestions, the students would lose the same number of points no matter which questions were answered
incorrectly. Thisis perhaps a more fair approach to point assignment, but it is not the decision that was
made for this assessment.

226 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

However, this method of assigning weights fails for multiple choice questions that
have multiple answers with greater than 8 choices. Therefore, for questions with 8 or
more answer choices, the answer choices would be worth only ¥ point to keep their point

value lower than the FRCA and coding questions.

7231 Special Cases

There are afew special casesin this question-weighting scheme, included in the
guestions that are categorized as FRCA or SG. The questions that have weightings that
deviate from the standards discussed previously are questions 2, 18, 24-31, 43-44, 45, 57-

58, and 60-78%L.

Question 2 asks the student to produce the list of nodes visited in a binary search tree
search. The answer to this question could be partially correct and partially incorrect, but
there are only three elementsin this particular search, so it was decided that each element
of the search would be worth 1 point. The grading guideline explains how to assign

partial credit for this question.

Question 18 asks the student to list al of the children of a particular node of atree.
The question isreally a free-response question that has a definite answer. However, since
three answers are expected, it is possible that a student would forget one. Doing that
should not cause the student to lose al credit for the question. So, the three answers were

weighted 1 point each, making the question worth 3 points. Thiswas done to keep each

% Refer to Appendix A of this dissertation for the exact wording of the questions referred to in this section.

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 227

guestion worth awhole number of points wherever possible and to avoid fractional point

vaues other than Y2.

Questions 24 - 31 ask the students to choose, out of alist of given data structures, the
ones that are most accurately described by the problems given in each question. Some of
these could have multiple answers and require the students to apply what they know
about data structures to novel problems. However, they are not as complex as the coding
guestions, because the students are given an answer-bank of choices. Also, some of the
guestions had three answers, which was hard to divide into 8 points. Therefore, a

compromise of 6 points per question was assigned to them.

Questions 43 and 44 are true-fal se questions that ask the student to re-write a
statement to be trueif they believeitisfalse. Both of these questionsinvolve Big O
notation, so the students have to give the correct Big O bounds for the question. Thisis
more complex than aregular true-false question. The true-false part of the question was
weighted the same as the other true-fal se questions on the exam (1 point). The re-writing
was given aweighting of 2 points, because it required alittle more effort than merely
stating the truth value of a statement. Therefore, each of these two questionsis worth 3

points.

Question 45 asks the student to organize functions by growth rate. Originally the
guestion was to be weighted 8 points, but since there are only 7 functions to be ranked, it

made point breakdown easier to assign the question 7 points.

228 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

Questions 57 and 58 ask the student to provide the base case and recursive case of a
recursive formula. These two questions were given half the weight of a code question,
because they are not as complex as some of the coding questions, yet require a bit more

than FR1A question.

Questions 60 — 78 ask the students to identify the parts of code associated with a
given programming vocabulary term. The answers to these questions are free response
and are categorized “complex” because the answer that needs to be provided is not as
simple as some of the other free-response questions, in turn because students have to ook
at apiece of code and identify the correct part. Also, the gradingis not as
straightforward, because there may actually be multiple correct answers for one of the
vocabulary terms. In the grading guide, the possible answers are elaborated. These
guestions fit better into the category of a simple free-response question or even a
multiple-choice question, because the students have to pick out from a given code
segment where the vocabulary terms are. Therefore, the questions were given the

weighting of 1 point each.

724 Partial Credit (The Triage Theory of Grading)

The grading guideline gives a detailed description of how the coding questions are to
be graded. However, the justification of this grading system must be given. When
working on the grading system for the exam, several issues were considered. Among

them were the relative weightings of the individual types of questions. The most difficult

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 229

consideration was how to handle questions that had the potential for partialy correct
answers. These questions are primarily the coding questions on the exam, athough afew

of the complex-answer, free-response questions use a system for partial credit as well.

The system for partial credit is based on the Triage Theory of Grading (Rapaport,
2006). In thissystem, atotally correct answer is given full credit and an answer that is
clearly wrong is given minimal credit. In this system, zero pointsis reserved for not
putting any answer for a question. Any answer that fallsin between is given half credit.
In this way, the points for a question do not have to be broken down across syntactically
specific constructs of the particular question, but rather across the general themes of the

guestion.

This theory concisely explains how to grade coding questionsin away that could be
easily communicated to the raters in the grading guideline. Also, it allowsfor the
language of implementation to be changed without necessitating an entire re-write of the
grading guideline. The theory was adopted for the coding questions and some of the free

response questions.

The student’s final scoreis the total number of points earned on the exam. This
number is then divided by the total number of possible points to get a percentage score.
Instructors can use the percentage score however they see fit within their own
classrooms. Thisleaves the correlation of a particular percentage score to aletter grade

to the discretion of the course instructor.

230 CHAPTER 7 EXAM ADMINISTRATION AND GRADING
7.3 Study Design

In order to determine the reliability and provide data to determine the validity of the
assessment instrument, the exam was administered to students so that their scores could
be analyzed. Since the exam was designed to be an assessment of the CS1-CS2
sequence, the instructors for the CS2 course (CSE 116) at UB were approached about the
possibility of giving this exam as their final exam for the course in both the Fall 2005 and
Spring 2006 semesters. As discussed in Chapter 6, the instructors for both courses agreed
to administer the exam and offered suggestions for the improvement of the instrument as

well.

7.3.1 Resear ch Questions

For validity, students who participated in the study consented to have their final
gradesfor CSE 115 and CSE 116 analyzed. In an attempt to show criterion validity, the
students’ results on the exams were compared to both their CSE 115 and CSE 116 grades
to look for any correlations between the two scores. It was hypothesized that the exam
score would be correlated with their performance in both of these courses. However, it is
known that the exam itself is factored into the student’ s final grades for CSE 116.
Therefore, student’ s scores in CSE 116 are compared both to thisfinal grade aswell asa

recomputed grade with the final exam score removed.

Other questions that the study attempted to answer were:

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 231

1)

2)

3)

4)

5)

6)

7)

7.3.2

How long on average does it take students to finish the exam?
Would students of different genders perform differently on the exam?

Would students of different ages or level in school perform differently on the

exam?

Would computer science and engineering majors or minors perform

differently from non-majors on the exam?

Would students who did not take CS1 at the University at Buffalo perform

differently on the exam?

Would students who repeated either CS1 or CS2 perform differently on the

exam?

Would students with prior programming experience perform differently on the

exam?

Subjects

The subjects of this study were students enrolled in CSE 116, Introduction to

Computer Science for Mgjors 11, at the University at Buffalo in the Fall 2005 and Spring

2006 semesters. This course at the University at Buffalo is equivalent to a CS2 as

described in CC2001. Institutional Review Board approva was obtained before data

collection began for this study. The instructors for these courses agreed to give this exam

asafina exam for CSE 116 in those two semesters. Students were required by the

232 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

gyllabus to take the final exam for the course. However, the students were not required to

participate in the study that analyzed the results of their exam scores.

Students were informed of the study and their ability to participatein it prior to final
exam day. On the day of the exam, students were presented with the consent form to sign
if they were interested in participating in the study. One hundred students agreed to

participate in this study®.

7.3.3 Study Protocol

In order to correlate student performance on the exam with their performance overall
in both CSE 115 and CSE 116, and to help the instructors of CSE 116 use the exam data
as final exam grades for their students, student names needed to be associated with their
exam papersin someway. However, since the exam needed to be graded, having student
names on the exam could introduce rater-bias effectsif the student was known to the

rater.

To eliminate this, the students were assigned an exam number for the study. This
exam number appeared with their name on only the first page of the exam booklet.
Student names did not appear on the answer booklet at all, and students were instructed

not to put their name or any other identifying information on the answer booklet.

To gather information to answer the additional questions givenin 87.3.1, a

demographic questionnaire was created. This questionnaire is given as Appendix D of

2 See §9.2.1 for a comparison of students who did participate in the study to those students who did not.

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 233

this dissertation and collects information about gender, age, major, and prior
programming experience in an attempt to provide answers to the additional research

guestions. Only the student’ s exam number appeared on the demographic questionnaire.

University at Buffalo final exams are scheduled by a university-wide scheduling
system. The date and time of the exam is publicly announced, and instructors use this
schedule to inform students when the final exam for a course will be held. Before the
exam began, exam packets (study consent form, demographic questionnaire, exam
booklet, and answer booklet) were distributed in the exam room by the exam
administrators. Students were spaced appropriately in the room for afinal exam so that

they could not directly see any other students’ papers.

When students began arriving at the exam room, they were instructed to take a seat
where there was an exam, but not to open the exam booklet until we officially began the
exam. At the exam time, | informed the students about the study, the consent form, the
demographic questionnaire, their exam numbers, and the answer booklet. Students were
then given afew minutes to complete the demographic questionnaire and read the
instructions on the front page of the exam. They also had the opportunity to ask any

guestions about the study at this time.

All of the students began the exam together and were given three hours to complete it.
Exam administrators were in the room for the entire exam, and students were free to

leave the exam room as soon as they were finished with the exam. When a student

234 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

finished the exam, it was brought to the front of the room, and the time of completion

was noted on the front page of the answer sheet.

Students were not alowed to leave the room unsupervised while they were taking the
exam. If astudent requested to leave the room for any reason other than avisit to the
lavatory, the request was denied. If a student requested to use the lavatory, one of the
exam administrators escorted them to the lavatory and waited to escort them back to the

exam room.

Students could ask questions during the exam. These questions mainly consisted of
confusion about where to write answers. Some students did not realize at first that there
was an answer booklet. Questions 60 — 78 were particularly problematic, because
students did not seem to notice that the directions said that the code for those questions

was in the answer booklet only.

After three hours, all exams were collected. Exams were kept in storage by me until
the grading process could begin. Interesting conflicts uncovered while grading the exams
are described in 87.4. However, to ensure the integrity of the original answers, copies of
the answer sheets were made, and it was these copies that were actually graded during the

grading stage of the process.

7.34 Exam Grading for Study Participants

As described above, many of the questions on the exam are objective, having one and

only one correct answer. These questions are easy to grade, because they do not suffer

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 235

from the problem of personal judgment invading the grading process. They suffer from
grading errors, however, due to smple human error. Thistype of error iseasily
eliminated if the exam is machine graded. Machine grading of this exam was not

attempted for the purposes of this study or this dissertation.

Other questions, mainly the coding questions, require that the raters use their
judgment to assign a grade to the student. This type of subjective grading must be
carefully monitored to ensure consistency among the grades assigned to each question.
To prevent rater inconsistency, a grading rubric was provided. In order to test that the
rubric was clear and that the question grading would be consistent, two raters were
assigned to grade each question that had the possibility for partial credit. After both
raters graded a question, their grades were compared. The results were surprising and are

discussed in §7.4.

When all of the exam grades were computed, the scores were given to the CSE 116
instructors for use as they saw fit in their respective courses. The data collected from the
exam scores and the demographic questionnaires were then analyzed; the results are

discussed in Chapter 8.

7.4 RatingtheRaters

For questions that had the potential to be awarded partial credit, two raters were
assigned to each student’ s paper. They were each given acopy of the student answer

sheets and the grading rubric. Grading of the questions was done independently and then

236 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

the scores were compared. Even though inconsistent scores were expected, the raters
personally expressed surprise at the number of inconsistent scores uncovered in the
grading of the exam. In an attempt to resolve the conflicts and to try to determine the
cause of the discrepancies, the raters discussed the justification for their ratings. During
this process, some clarifications were made to the grading guideline. If clarifications
were made to the grading guideline, the questions were re-graded using the new

guideline. These re-graded scores are the ones that have been analyzed for this study.

However, the most interesting result of the discussion were the number of conflicts
that were made simply by mistake; after looking at the student’s answer a second time,
some raters realized that they had in fact given the student an incorrect score the first

time.

This leads to arecommendation in the grading guideline that those questions
(subjective free response) be graded by two ratersif possible, to trap for such
inconsistencies. However, thisis not always feasible and is not a necessary part of the

grading process for this exam.

74.1 Questions Double Graded to Ensure Rater Consistency

After the exam was graded by both raters, it was extremely disheartening to discover
that only 14 of the 100 exams for study participants did not have some sort of grading
conflict in the subjective grading questions. This meant that 86% of the exams had at

least one grading conflict that needed to be resolved. Tables 7.1 and 7.2 show the

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 237

statistical breakdown of how many errors were present in each exam and for each

guestion.

Appendix E gives afull discussion of the errors noticed within the grading
discrepancies. Thisdiscussion takes place in the context of atable that shows the exams
that have grading discrepancies as well as the grades given by each of the two raters. The
discussion included in the tables in the appendix will elaborate on what each discrepancy

was between the raters and how it was resolved.

Question Number of Exams
Number that had
Discrepancies™

Question 5 12
Question 11 12
Question 12 13
Question 57 14
Question 58 15
Question 59 18
Question 10 19
Question 102 23
Question 101 25
Question 23 27
Question 103 28
Question 9 29

Table 7-1: Discrepancies by Question

% Note that this number also corresponds to the percentage of exams with a conflict because the total
number of exams studied was 100.

238 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

Number of Number of

Discrepancies Exams with
in Exam that Number of
Discrepancies®

S EIEIENTIE

19
20
26

Table 7-2: Number of Discrepancies per Exam

NW R OGO N

74.2 Discussion of Rating the Raters

Appendix E gives a detailed breakdown of the discrepancies uncovered from the
double-grading of the subjective questions on the exam discussed in §7.4.1. Also
discussed in Appendix E are the resolutions of the discrepancies and which rater was
correct in each case. In summary, rater 1 was correct approximately 44.5% of the time,
while rater 2 was correct 47% of the time and neither rater was correct 8.5% of thetime
when just considering the discrepancies. It isinteresting to note that every question that
was double graded had at least one exam where the raters gave two different grades, and,
upon the two raters coming together to discuss the discrepancies in grading, the decision

was reached that neither grade originally given was actually correct.

To resolve the conflicts, the raters were brought together in the same room with all

the exam papers that were in conflict. The conflicts were handled on a question-by-

24 Note once again that since the number of examsis 100, this number isaraw value as well asthe
percentage of the total.

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 239

guestion basis, meaning that all conflicts for question 5 were resolved first, followed by
guestion 9 and so on. Before looking at any student answer papers, the question and
grading guideline were reviewed so that each rater could remember what the question

was and how it was to be graded.

The raters were each given the answer book that they graded for a particular question
in order to see their own notes (if any) about the thought process they used while grading
the particular answer. For each student, the raters read the answer for the student in their
answer book and then discussed what rating the student should have. Any conflicts were
talked over and resolved through discussion at this point, and a single score was decided

for each answer.

Through these discussions, it was discovered that both raters made errorsin grading
that were simply human errors. The errors were not the fault of a poor grading guideline
or even a poor understanding of the guideline. When discussing the inconsistencies
between the two raters, there were times that one rater looked up at the other and said
things like “I’m sorry, this should be given no credit — | don’t know what | was thinking.”

This exchange was repeated numerous times throughout the sessions.

Overal, the conflicts were resolved by developing afew minor modifications to the
wording of the grading guideline for that question. These changes are now printed in the
grading guideline to be used to grade the exams. These modifications were clarifications,
rather than actual re-writes of the guideline. However, the exams were looked at once

more with the newer, refined guidelines.

240 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

The raters recommended re-writing questions 57 and 58 as multiple-choice questions
that ask the students to identify the base case(s) and recursive case(s) of arecursive
definition. The raters noted that students copied down various configurations of answers
for the base case and recursive case, making accurate grading difficult. Thisway, the
student’ s knowledge of base cases and recursive cases is tested, not their ability to copy
notation from the question in aform the rater will believe mimics understanding. This
change has not been implemented in the version of this exam reprinted in Appendix A,

but is left for future revisions of the exam.

7.5 Recommendationsfor Grading

751 Two Ratersfor Subjective Questions

It is highly recommended that questions that could be graded subjectively be graded
by more than one rater. These questions are indicated as type SG in the grading
guideline. Of course, this could be difficult, if not impossible. However, the benefit of
two raters and the comparison of their ratings is significant. It can point to afailurein
understanding of the guideline and therefore a skew in the scoring of the exam. It isalso
important that, if two or more raters' grades conflict, the conflicts be discussed and
resolved between the raters, so that one score is agreed upon for that question. Dueto the
triage style of grading the questions, the discrepancies will not involve minor syntactic

minutiae, but rather the larger issues of the question.

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 241

If it is not possible to ensure double rating for these questions, the next-best solution
isto have one person rate the entirety of the questions for a single administration of an
exam. Inthisway, decisions about how questions are graded are resolved with the single
rater and the rater will know how previous answers were graded in an effort to minimize
errors. Many instructors would assume that a single rater will be consistent, but as
discovered by the exercise in having two people grade questions on the exams for the
study, even one person can be inconsistent with themselves. A single rater should be
encouraged to grade all questions twice being blind to the previousrating. Itisaso

encouraged that the second grading be in adifferent order from the first grading.

Overall though, the checks and balances of two ratersis preferred.

752 Grading Simultaneously

If two raters will be grading the same question on the same exam, or if it becomes
necessary to break the grading of a single question across two or more raters (not to be
checked for discrepancies), it is recommended that the grading take place simultaneously.
In fact, it is recommended that the grading be accomplished at the same time in the same

room, with discussion encouraged between the raters.

The discussion between the raters ensures that everyone grading a particular question
has understanding of the guideline as well as what constitutes partial credit for a question.
Also, it alows intermittent discussion while grading, if concerns arise over a particular

student’s answer. Thiswill allow for greater consistency between the raters, if both are

242 CHAPTER 7 EXAM ADMINISTRATION AND GRADING

rating the same question for the same student. However, it can also establish rulesfor all
theraters, if the grading is split among them. Standards that can be adhered to can be

established during this process.

If grading must be split among different raters with each rater grading a disjoint
subset of the total number of exams, it is beneficial to have the raters sit down with at
least two different students’ answers and grade them together, to further facilitate
communication among the raters and to provide a quick way to check that all the raters

understand the grading for a particular question.

753 Grading Anonymous Tests

It was found surprisingly refreshing by the raters for there not to be any student
names on the answer booklets. While thisis by no means required of the raters of this
exam, it is noted that there seemsto be a greater focus on the grading of an exam answer
when a student’ s name is not present on the paper, and therefore no pre-conceived
notions of the student are available to potentially cloud the judgment of the rater (for

either good or bad).

Also, when looking at statistical information (mean, median, high/low score), having
anonymous data was considered a benefit. The instructors were able to be more
analytical about decisions about the appropriateness of the scores. Theinstructors
commented that they were not influenced by the notion that student X, who isagood

student, did not do well on this particular question or the exam as awhole, which might

CHAPTER 7 EXAM ADMINISTRATION AND GRADING 243

cause them to reconsider the weighting of the particular question or exam as it pertains to
overall grades. Since it was not known at first which scores belonged to which students,

the aggregate data could be analyzed to deem the results of a question acceptable or not.

Once again, these are observations that were made throughout the grading process of
the exams that will be used as part of the study. | encourage faculty membersto try
anonymous grading for a particular exam to see if they too notice this difference. The
only administrative overhead for this style of grading is to number the exams and to

maintain an externa list of correlations between exam numbers and students.

7.6 Conclusion

This chapter discussed the way the exam should be administered as well as the
creation of the grading rubric for the exam. A study was undertaken to collect datato
analyze the reliability and validity of the exam, and the design of the study was described

in this chapter as well.

The chapter ended with a discussion of the process and discrepancies that were found
when rating the student exams. All discrepancies were resolved before analysis of data
began, but the discrepancies shed interesting light on the grading process and allowed for

further refinement of the grading rubric for the exam.

244

Chapter 8

Experimental Resultsand Analysis

This chapter presents a statistical analysis of the collected data from two

administrations of the exam as afinal exam for CSE 116 at the University at Buffalo.

8.1 Overall Exam Statistics

Recall that the exam has atotal of 127 questions and is scored out of 354 points.
Reporting of the statistics will give scores out of the total points possible for the exam as
well as that raw score as a percentage. One hundred exam scores were analyzed during
the course of the study; therefore, the n for al statistical tests should be assumed to be
100, unless otherwise stated. All statistics are reported in aggregate, that is, the two
administrations of the exam are treated as one for purposes of statistical analysis. An

alphalevel of 0.05 was used for all statistical analyses in this chapter®.
e The minimum score on the exam was a 138 (38.9%).

e Themedian score on the exam was a 254 (71.7%).

% Alphalevel indicates the confidence level for statistical analysis. An alphalevel of .05 (or a confidence
level of 95%) indicatesthat p valuesfor all statistical tests run will need to be less than .05 to be considered
statistically significant. Therefore, any p values less than .05 are considered significant results for a
particular statistical test. The p value isthe name given to the value analyzed for statistical significance.

245

246 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

* Themaximum score on the exam was a 334 (94.3%). No one earned a

perfect score on the exam.

* Themean score on the exam was a 243.13 (68.6%).

82 Time

821 TimetoComplete®

As students completed the exam, their time to completion was noted on the top of
their answer paper. From these times, we have been able to determine the following

information:

* Theminimum time that any student spent on the exam was 1 hour 20

minutes.
« Themedian time spent on the exam was 2 hours 36 minutes.”’

* Themaximum time that any student spent on the exam was 3 hours 00
minutes. All students were stopped at this time regardless of whether or not

they had completed all the questions on the exam.

The mean time for completion of the exam was 2 hours 31 minutes.?

% The n for these time statistics is 98 because there were two students whose time was not reported on their
answer sheets.

2" Both the median and the average times is longer than a 2-hour exam. One of the goals of the exam was
to create a 2-hour exam that could be administered in a 3-hour time period. Since the median time is longer
than 2 hours, a possible direction for future work isto look to making the exam shorter so that the median
time fitsinto the original 2-hour window.

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S

247

Table 8-1 shows the times to complete and the number of students who completed in

that time. Figure 8-1 shows a graph of these times.

Timeto Complete

Number of Students
Completed in that

Timeto Complete

Number of Students
Completed in that

Time Time
1:20 1 2:27 2
1:23 1 2:28 2
1:26 1 2:29 2
1:45 1 2:30 2
1:47 1 2:31 3
1:49 2 2:36 3
1:50 2 2:37 4
151 1 2:39 1
1:52 1 2:40 1
1:58 2 2:41 1
1:59 1 2:43 1
2:04 1 2:44 1
2:06 2 2:45 1
2:.07 1 2:46 2
2:08 2 2:47 1
2:09 1 2:48 1
2:11 2 2:50 1
2:12 1 2:53 2
2:13 1 2:54 1
2:15 4 2:55 1
2:16 1 2:56 1
2:19 2 2:57 2
2:20 3 2:58 1
2:21 1 2:59 2
2:24 1 3:00 22

Table 8-1: Timeto Complete Exam

% See §8.2.3 for discussion of this group of students.

248 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S

40 H

304

Frequency
=
1

104

Mean=4272.24
Std. Dev.=1565.32
M =48

0 T T T T
01:00:00.000 01:30:00.000 02:00:00.000 02:30:00.000 03:00:00.000

Time Finished

Figure 8-1: Histogram for Timeto Complete Exam

8.2.2 Corrdation with Exam Score

An investigation was undertaken to determine if there was a correl ation between
student’ s time to complete the exam and their score on the exam. Figure 8-2 shows the
scatterplot of time to complete the exam versus exam score. This plot does not show

evidence of alinear relationship.

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S
350
o
o o
o o o oo ©
300 o 0 Oq
o o
°®
o o}
9 0 o O © o4 o
o a8 @ % o
= o] o o o @
= 250 o Q
L & o g
E o 0
-3 D G
o o o a © 8
= 200 o ©° 5
° =
[a 0 5 o g
? o
150 o o]
o o ®
100
T T T T I
01:00:00.000 01:30:00.000 02:00:00.000 02:30:00.000 03:00:00.000
Time Finished

Figure 8-2: Plot of Total Points Earned versus Time Finished

249

The results of the correlation show that the time to compl ete does not correl ate with

student performance on the exam in the positive or negative direction.

8.2.3
exam

Analysis of studentswho took the full three hoursto complete

Even though 22 student papers were collected at the end of the 3 hour time limit, it

does not appear that these students were unable to complete the exam rather that they

250 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

were simply continuing to refine answers and go back to skipped questions on the exam.
Looking at the individual question scores for those 22 students, none of the studentsin
that group appeared to leave a significant portion of the exam blank. For example, all
students answered questions and received credit up to and including the last question on
the exam. Analyzing the two groups statistically, 76 students finished the exam before
the 3 hour time expired (M = 247.48, SD =52.107) and 22 student (M = 227.95, D =

35.075) papers were collected at the 3-hour limit®.

8231 Statistical Results

Table 8-2 shows the results of the independent samples t-test for scores on the
exam™. However, the independent samples t-test can only be used accurately if the
variances between the two groups are equal. To ensurethis, Levene's Test for Equality
of Variancesis performed as a precursor to the t-test. For these two groups, Levene's
Test for Equality of Variances showed a significant p-value, which means that the two
groups do not have equal variances and the traditional t-test does not apply in this case.

Table 8-3 givesthe results of Levene's Test.

Therefore, at-test that does not assume equal variances must be used. Table 8-4
givesthe results of such at-test. Another alternative test when the groups studied do not

have equal variancesisthe Mann-Whitney U. Table 8-5 gives the results of using the

% M is the mean score on the exam for the group. SD is the standard deviation on the exam for the group.
Recall that for this particular analysis, time data was not recorded for 2 students in the study, so thenis 98.
% An independent samples t-test measures the difference in variance between two groups to determine if
the groups are actually from two different populations. The variance of a group of scores tells you how
spread out the scores are around the mean (Aron 2002: 28).

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 251

Mann-Whitney U to compare these two groups. In both cases, thereis a statistically

significant difference detected between these two groups.

t-test for Equality of Means™

95% Confidence

Mean Std. Error Interval of the
t Df p Difference Difference Difference
Lower Upper
Exam Scores -1.650 96 102 -19.526 11.837 -43.021 3.970

Table 8-2: t-test for time to complete exam

Levene's Test for Equality of Variances
F p
Exam Scores 6.095 .015

Table 8-3: Levene's Test for Equality of Meansfor timeto complete exam

t-test for Equality of Means (Equal Variances not assumed)

95% Confidence

Mean Std. Error Interval of the
t df p Difference Difference Difference
L ower Upper
Exam Scores -2.040 50.619 .047 -19.526 9.573 -38.748 -.303

Table 8-4: t-test (unegual variances) for time to complete

3 |nthisand all tables presenting results of at-test, the t column gives the t-value, the name given to the
value that the t-test actually computes. The df column gives the degrees of freedom, or the number of
scoresin asample that are free to vary. The p column is the p-value indicating significance of the result.
The Mean Difference column gives the difference of the means between the two groups. The Std. Error
Difference gives the difference between the standard errors of the two groups. The 95% Confidence
Interval of the Difference shows that the difference between the means of these two groups falls between
these two values. These values are the standard reported values for the t-test. It isonly when the p-valueis
significant that the values have meaning. For purposes of my analysis, when a p-value is significant, we
can conclude a difference between the two groups being studied.

252 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

Mann-Whitney Test for Comparison of Means

Mann-
Whitney Wilcoxon
U W p Z

Exam Scores 585.000 838.000 .033 -2.137

Table 8-5: Mann-Whitney test for time to complete

8.2.3.2 Analysisof Results

The results of the t-test assuming non-equal variances and the Mann-Whitney U test
are statistically significant. However, exactly what meaning can be prescribed to this
differenceisunclear. Sincethereis no evidence that the students were unable to
complete the exam (due to the lack of large blocks of skipped questions), it could signify
that the students who took longer were not as adept with the material as those who
finished earlier. However, it could aso mean that the students are slower workers and
need more time to compl ete tasks of significant size. Further exploration of thisissueis

needed and 8§8.2.3.3 discusses these two groups of students further.

8.2.3.3 Additional Statistical Results& Analysis

The students who took the full three hours to complete the exam performed
differently on the exam when compared to students who compl eted the exam before the
three hour time period had elapsed. Looking at the means for the two groups, it would
appear that the students who took three hours performed worse on the exam than the

others. In an effort to seeif these two groups of students also performed differently in

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 253

their computer science courses so far, additional t-tests were performed looking at overall

course grades for the two groups in both CSE 115 and CSE 116.

Looking at course grades in CSE 115 there were 73 students who compl eted the test
in under the three hour time limit also completed CSE 115 at UB and have recorded
course grades (M = 3.2653, D = 0.75740) and 22 students who used the entire three
hours had course grades recorded for CSE 115 (M = 3.2273, SD = 0.64617). Table 8-6

shows how letter grades were converted to a4.0 scale for statistical analysis.

Conversion

Letter Grade 104.0 scale
A 4.0
A- 3.67
B+ 3.33
B 3.0
B- 2.67
C+ 2.33
C 2.0
C- 1.67
D+ 1.33
D 1.0
F 0.0

Table 8-6: Conversion of Letter Gradesto 4.0 Scale

Table 8-7 shows the results of the independent samples t-test for gradesin CSE 115
for the two groups. As can be seen from the table, there were no significant differences

between the two groups in their grades in CSE 115.

254 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t df p Difference Difference Difference
L ower Upper
Exam Scores 213 93 .832 -.03807 .17846 -.39246 .31632

Table 8-7: t-test for CSE 115 overall course grades
Looking to the students performance in CSE 116, there were 76 students who

completed the test in under the three hour time limit also completed CSE 116 (M =
3.0611, SD =0.95044) and 22 students who used the entire three hours had course
grades recorded for CSE 116 (M = 2.8641, SD = 0.85834). Conversion from letter grade

to 4.0 scale once again uses the conversionsin Table 8-6.

Table 8-8 shows the results of the independent samples t-test for gradesin CSE 116
for the two groups. As can be seen from the table, there were no significant differences
between the two groupsin their gradesin CSE 116. Thisis an interesting result given
that the score on the exam is a contributing factor to the overall CSE 116 grade.
Therefore, an additional analysis was performed with recomputed CSE 116 grades not

including the final exam score.

t-test for Equality of Means

Mean Std. Error 95% Confidence Interval
T Df p Difference Difference of the Difference
Lower Upper
Exam Scores -.874 96 .384 -.19696 .22541 -.64440 .25048

Table 8-8: t-test for CSE 116 overall course grade

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 255

Looking to the students recal cul ated performance in CSE 116, there were 76 students
who completed the test in under the three hour time limit also completed CSE 116 (M =
3.1053, SD =0.99396) and 22 students who used the entire three hours had course
grades recorded for CSE 116 (M = 2.8336, SD = 1.08238). Conversion from |etter grade

to 4.0 scale once again uses the conversions in Table 8-6.

Table 8-9 shows the results of the independent samples t-test for recal culated grades
in CSE 116 for the two groups. As can be seen from the table, there were no significant

differences between the two groupsin their gradesin CSE 116.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
T df p Difference Difference Difference
L ower Upper
Exam Scores -1.107 96 271 -.27163 .24548 -.75890 .21565

Table 8-9: t-test for recalculated CSE 116 overall cour se grades
Lastly, average student performance across CSE 115 and CSE 116 were considered.

There were 73 of the 76 students who completed the test in under the three hour time
limit also completed CSE 115 and CSE 116 at UB (M =3.19, SD =0.787) and 22
students who used the entire three hours had course grades recorded for CSE 115 and
CSE 116 (M = 3.03, SD = 0.751). Conversion from letter grade to 4.0 scale once again

uses the conversionsin Table 8-6.

Table 8-10 shows the results of the independent samples t-test for average gradesin

CSE 115 and CSE 116 for the two groups. As can be seen from the table, there were no

256 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

significant differences between the two groupsin their average gradesin CSE 115 and

CSE 116.
t-test for Equality of Means
95% Confidence
Mean Std. Error Interval of the
t df P Difference Difference Difference
Lower Upper
Exam Scores -.835 93 .406 -.158 .190 -.535 21

Table 8-10: t-test for averaged CSE 115 and CSE 116 overall course grades

8.2.3.4 Conclusions about Studentswho Took Three Hoursto Complete

The exam scores obtained from these two different groups of students point to a
difference in these two groups. Analysis of the two groupsin performance overall in the
courses they have completed (CSE 115 and CSE 116) yielded no significant differences
between the groups in performance in the courses. In any case, the students who worked
until the very end of the exam appeared to have “finished” the exam, even if not to the
same level of performance as the other students who decided for themselves that they had
completed the exam. Further analysis of this phenomenon is perhaps necessary to draw

any additional conclusions either about the students themselves or about the exam.

8.3 Rdiability

Recall that a necessary condition for determining the validity of an instrument isto

first determine the instrument’s reliability. For the purposes of this dissertation, a

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 257

measure of internal consistency reliability was chosen for the advantages of ease of data
collection and exam administration. Test-retest reliability was not used because of the
inherent difficulty in getting the same group of students to take the exam twice. Also,
given that thisisatest in knowledge in a particular area, it is possible that a student’s
knowledge could improve in this area over even a short time (especially because, for
many students, thisistheir major). Assessing reliability through multiple forms was not

attempted for this study to alleviate any further complications in the grading process.

Due to the choice of internal consistency, Cronbach’s a pha was chosen as the method
to assess internal consistency reliability.*> An alphagreater than 0.7 is considered
minimally acceptable for an instrument. The closer the apha number isto 1 (meaning
the instrument is perfectly internally consistent) the more internally consistent the
instrument is. Cronbach’s alphawas 0.903, with Cronbach's Alpha Based on

Standardized Items being 0.940. This apha number is considered to be very good.

8.4 Demographic Information

Demographic information on al of the students was collected during administration
of the exam. Students were not required to answer the demographic questionnaire and

were instructed to not answer any questions that they did not feel comfortable answering.

% Cronbach’s alphais atest used to measure internal consistency. One way to determine internal
consistency isto split the test in half and compare the variance in the scores of one half of the test to the
other half. Cronbach’s alpha computes all possible combinations of this type of splitting of the exam.

258 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

Therefore, the n for some of the statistical tests will vary slightly from 100 depending on

how many students elected not to answer a particular question.

84.1 Gender

Gathering information on gender alows us to assess whether there are gender
differencesin the level of performance on the exam. Ninety men (M = 243.67, D =

49.069) and 10 women (M = 238.25, SD = 54.201) took the exam.

8411 Statistical Results

Table 8-11 shows the results of the independent samples t-test for scores on the exam.
As can be seen from the table, there were no significant differences between the two

groups in their scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t Df p Difference Difference Difference
L ower Upper
Exam Scores .328 98 743 5.422 16.521 -27.363 38.208

Table 8-11: t-test for Gender

84.12 Analysisof Results

The results of the t-test are encouraging first steps into asserting that the exam has no
gender bias. However, the number of females that took the exam is small (due to the

sheer disproportionate nature of the computer science and engineering discipline).

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 259

Therefore, more subject data will need to be assessed for me to be confident in claiming
that the test is free of gender bias. However, these results are encouraging in that evenin

this preliminary stage, they do not point towards a gender bias (in either direction).

8.4.2 Age

The age variable was gathered by asking students to choose from the following
choices: 18, 19, 20, 21, 22, 23, 24, 25— 29, 30 — 34, 35— 39, 40— 44, 45 - 49, 50 and
over. Thefirst severa choices represent the typical age range of undergraduate students.
Aswe move away from the typical age range, arange of age choicesis presented. Itis
most often the case that students who are enrolled in CS1 and CS2 are freshmen in
school. It isnot unreasonable to assume that these students came to college right after
high school. Therefore, their ageistypically 18 or 19. For purposes of this analysis, we
will consider that to be the typical age of a CS1-CS2 student. A breakdown of how many
students fall into each age category isgiven in Table 8-12. We will compare the results
of thetypically aged CS1-CS2 student (n = 63, M = 242.74, D = 51.107) and the non-

typically aged CS1-CS2 student (n = 37, M = 243.80, D = 46.854).

260 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

Age (AgeRange) | Number of Studentsin
Age Range

18 30
19 33

20 9

21 8

22 1

23 3

24 4
25-29 6
30-34 2
35-39 3
40— 44 1
45— 49 0
50 and over 0

Table 8-12: Age Ranges of Participants

8421 Statistical Results

Table 8-13 shows the results of the independent samples t-test for scores on the exam.
As can be seen from the table, there were no significant differences between the two

groups in their scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
T df p Difference Difference Difference
Lower Upper
Exam Scores -.103 98 .918 -1.059 10.271 -21.441 19.323

Table 8-13: t-test for Age

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 261
84.22 Analysisof Results

The results of thist-test are further encouragement for alack of biasin the exam.
Since the two groups did not perform differently on the exam, the results point towards

an exam that is not age-biased.

84.3 Year in School

Y ear in school was collected to be either freshman, sophomore, junior, or senior.
This data was collected from the demographic questionnaire, so it captures the year in
school the participants consider themselves. This can be different than the year in school
the university considers the student for a variety of reasons (AP credit, transfer credits,

etc).
8431 Statistical Results

In the analysis, year in school was treated as a dichotomous variable®®. Thiswas
done by classifying students into groups of freshmen (n =52, M = 243.67, D = 51.092),
and non-freshmen (n =47, M = 241.65, D = 48.013). | have decided to treat this
variable this way because | am most interested in looking at the “typical” CS1-CS2
student versus a*“non-typical” student to seeif academic maturity has any effect on
performance on this exam. Table 8-14 shows the results of the independent samples t-
test for scores on the exam. As can be seen from the table, there were no significant

differences between the two groups in their scores on the exam.

% Dichotomous means that the variable only takes on two val ues.

262 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
T Df p Difference Difference Difference
L ower Upper
Exam Scores .203 97 .840 2.024 9.994 -17.811 21.859

Table 8-14: t-test for Year in School

8.4.3.2 Analysisof Results

Since age is not always indicative of year in school, these results begin to show that
the exam is not biased in any direction to year in school. Thisisimportant because it
could be the case that an exam like this has hidden biases for students who have had
many years of experience with college courses and course final exams and would
therefore cause a difference in performance for those students. These results point

towards the fact that thisis not the case.

8.4.4 Major

Student major was analyzed as being either computer science, computer engineering,
or “other”. If the student chose “other”, they were asked to specify their intended major.
For “other”, the answers included: Bioinformatics, Business, Engineering specialties
other than computer engineering, English, GIS/Cartography, Mathematics, Media Study,
and Undeclared. For purposes of thisanalysis, all students who indicated that their major

was one other than computer science or computer engineering were classified in one

group.

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 263

8441 Statistical Results

For this variable, testing was undertaken in two ways. First, computer science and
computer engineering majors (n = 76, M = 242.18, D = 50.795) were compared to non-
majors (n =23, M = 244.48, SD = 45.562). Table 8-15 shows the results of the
independent samples t-test for scores on the exam. As can be seen from the table, there

were no significant differences between the two groupsin their scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
T df p Difference Difference Difference
L ower Upper
Exam Scores -.195 97 .846 -2.301 11.817 -25.755 21.154

Table 8-15: t-test for Major (Computer Science or Computer Engineering vs. Other Majors)

Second, computer science majors were considered independent of computer engineers
and the non-majors were not considered. Since the CS1-CS2 sequence, especially with a
programming-first curricular influence, could be viewed by some as inherently computer
science and not computer engineering, this second test was undertaken to see if
differences existed between those two groups on the exam. Once again, major can be
viewed as a dichotomous variable, computer science majors (n =50, M = 247.64, D =
48.761) and computer engineering majors (n = 26, M = 231.67, D = 53.905). Table 8-

16 shows the results of the independent samples t-test for scores on the exam. As can be

264 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

seen from the table, there were no significant differences between the two groupsin their

scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
T df p Difference Difference Difference
Lower Upper
Exam Scores 1.306 74 .196 15.967 12.224 -8.390 40.324

Table 8-16: t-test for Major (Computer Science M ajorsvs. Computer Engineering M ajor s)

8442 Analysisof Results

Even though the exam is designed to assess the results of CS1 and CS2, it should not
be biased towards majors, because the CS1 and CS2 course could be taken by non-
majors, and they should have the same opportunity to succeed as the magjors. The results
of this analysis seem to indicate that non-majors have the same opportunity to succeed on

this assessment.

The second analysis shows that the test is not biased between computer science or
computer engineering majors. At our institution, the computer science and computer
engineering maors take many of the same courses in first two years of their respective
programs. However, since this test was designed for the computer science curriculum
only, it was a concern that it would be biased towards computer science majors.

However, this does not seem to be the case.

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 265

8.45 How Courses Were Taken

This section describes analysis undertaken with information provided by students on
the demographic questionnaire about where they took CS1 and CS2 and a so when they

took CS1 and CS2.

8451 Students Who Took Courses at Other Institutions

The first analysis that was attempted was to compare students who took any of the
CS1-CS2 sequence at an institution other than the University at Buffalo. However, when
the data from the demographic questionnaire were compiled, there were only 2 students
who completed CSL1 at another institution. This group size was not large enough to show

ameaningful result, so analysis did not proceed further.

8452 Statistical Results

Two separate analyses were performed on thisdata. The first compared students who
took CS1 and CS2 in consecutive semesters (n = 85, M = 246.56, SD = 46.950) versus
those who did not take CS1 and CS2 in consecutive semesters (n =6, M = 211.17, D =
46.071). For purposes of this analysis, the summer semester counted for consecutive
semesters, so there were four possible ways a student could take CS1-CS2 in consecutive
semesters (Fall-Spring, Spring-Fall, Spring-Summer, or Summer-Fall). Table 8-17

shows the results of the independent samplest-test for scores on the exam. As can be

266 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

seen from the table, there were no significant differences between the two groupsin their

scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t df p Difference Difference Difference
L ower Upper
Exam Scores 1.786 89 077 35.392 19.812 -3.973 74.757

Table 8-17: t-test for Taking CS1-CS2 in consecutive semesters

The second analysis compared students who took CS1 and CS2 in the traditional
academic year, i.e. CSlin fall semester and CS2 in spring semester, (n =71, M = 244.80,
D = 49.609) versus those who did not (n =23, M = 245.30, SD = 40.889). Table 8-18
shows the results of the independent samples t-test for scores on the exam. As can be
seen from the table, there were no significant differences between the two groupsin their

scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t df p Difference Difference Difference
L ower Upper
Exam Scores -.044 92 .965 -.509 11.437 -23.223 22.206

Table 8-18: t-test for Taking CS1-CS2 in traditional academic year

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 267

8453 Analysisof Results

The results of this analysis point towards no bias as to the taking of the introductory
sequence. The exam is designed to assess knowledge of the introductory sequence. It
would not be a desirable result that the group who took CS1-CS2 in atraditional
academic year performed better than a group that did not, or vice versa. Likewise, a
reguirement of the exam should not be completion of the CS1-CS2 sequence in
consecutive semesters. The results of the tests show that neither group performed

differently from the other on this exam.

8.4.6 Repeaters

The next group of students that was analyzed was students who repeated CS1 or CS2
or both. Considering students who failed either, or both of the courses, was the

performance on the exam of these groups different?

8.46.1 Statistical Results

The analysis on this variable was conducted in four ways. The first was comparing
students who failed CS1 at |east one time previously (n =6, M = 236.33, SD = 22.631)
with those students who had never failed CS1 (n = 94, M = 243.56, SD = 50.603).
Students were asked to report whether or not they had ever failed CS1, not whether they
had ever taken CS1 before. Therefore, this anaysis only looks at students who definitely

failed the course before and had to repeat it. Table 8-19 shows the results of the

268 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

independent samples t-test for scores on the exam. As can be seen from the table, there

were no significant differences between the two groupsin their scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t df P Difference Difference Difference
Lower Upper
Exam Scores -.681 8.653 513 -7.230 10.611 -31.383 16.922

Table 8-19: t-test for Repeaters (Studentswho failed CS1 vs. those who did not)
The second analysis compared students who failed CS2 at least one time previously

(n=3,M=271.17, SD = 31.086) with those students who had never failed CS2 (n = 97,
M = 242.26, D = 49.648). Table 8-20 shows the results of the independent samplest-
test for scores on the exam. As can be seen from the table, there were no significant

differences between the two groupsin their scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t df P Difference Difference Difference
L ower Upper
Exam Scores .999 98 .320 28.904 28.923 -28.493 86.301

Table 8-20: t-test for Repeaters (Studentswho failed CS2 vs. those who did not)

The third analysis compared students who had failed either CS1 or CS2 (inclusive) at
least once previously (n =8, M = 248.75, SD = 31.336) with those students who had
never failed either of CS1 or CS2 (n =92, M = 242.64, D = 50.693). Table 8-21 shows

the results of the independent samples t-test for scores on the exam. As can be seen from

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 269

the table, there were no significant differences between the two groupsin their scores on

the exam.
t-test for Equality of Means
95% Confidence
Mean Std. Error Interval of the
t df P Difference Difference Difference
L ower Upper
Exam Scores .498 10.507 .629 6.109 12.275 -21.064 33.281

Table 8-21: t-test for Repeater s (Studentswho failed CS1 and/or CS2 vs. those who did not)

The final analysis compared students who had failed both CS1 and CS2 at |east one
time previously with those students who had not failed both courses before. After
compiling the demographic information, it was discovered that only 1 student failed both
courses before. This group was too small to analyze and no further analysis was

performed.

8.4.6.2 Analysisof Results

This analysislooksin some ways for a practice effect that makes results on the exam
different for the different groups. The students who failed at least one of the courses
before would have had more time with the material and therefore might display different
results on the exam, in the positive direction. Another possibility is that the repeating
students are actually the weakest students and would therefore perform worse than the
other students. The fact that there is no difference between the groups of repeaters and

non-repeaters points to neither of these things.

270 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS'S
8.4.7 Previous Programming Experience

In gathering information about students' programming experience prior to taking CS1
and CS2, students were asked to identify how many years experience they had with
various programming or programming-like languages, including: C, C++, Java, Perl,
JavaScript, VB, VBScript, Fortran, BASIC, Assembly, and HTML. HTML isincluded to
trap for students who claim to have programmed before, but only have experience using
HTML**. Students aso had the opportunity to fill in other languages that they have used
and their level of experience with those languages. The other languages indicated by the
students were: ActionScript, ASP, Basic 8, C#, Commodore Basic, CSS, Expect/TCL,
Foxpro, Karel, Pascal, PHP, Python, Ruby, QBasic, Scheme, Smalltalk, SQL, Visual
Foxpro, and XML. Note that of these languages, CSS, SQL, and XML are not

considered programming languages.
84.71 Statistical Results

The analysis of this variable was conducted in three ways. The first was comparing
students who had programmed before taking CS1 (n =79, M = 245.53, SD = 49.699) and
those who had not (n = 21, M = 234.12, D = 48.052). Table 8-22 shows the results of
the independent samples t-test for scores on the exam. As can be seen from the table,

there was no significant difference between the two groups in their scores on the exam.

3 HTML isamarkup language, not a full-fledged programming language.

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 271

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t df P Difference Difference Difference
L ower Upper
Exam Scores 941 98 .349 11.406 12.120 -12.646 35.459

Table 8-22: t-test for Prior Programming Experience
The second analysis compared students who had programmed in Java before taking

CS1 (n=39, M = 253.51, SD =50.913) and those who had not (n =61, M = 236.49, SD =
47.541). Table 8-23 shows the results of the independent samples t-test for scores on the
exam. As can be seen from the table, there was no significant difference between the two

groups in their scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t Df p Difference Difference Difference
L ower Upper
Exam Scores 1.699 98 .093 17.021 10.021 -2.865 36.907

Table 8-23: t-test for Prior Programming (Prior Java programming)

The third analysis compared students who had previous experience in any of the C-
derived languages (C, C++, C#, Java) before taking CS1 in Java (n = 65, M = 250.20, SD
= 48.337) and those who did not (n = 35, M = 230.00, SD = 49.164). The C-derived
languages can be described as those whose syntax was primarily derived from C. Table

8-24 shows the results of the independent samples t-test for scores on the exam. Ascan

272 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

be seen from the table, there was no significant difference between the two groupsin

their scores on the exam based on the decision rule of p-values less than 0.05.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t df p Difference Difference Difference
Lower Upper
Exam Scores 1.981 98 .050 20.200 10.195 -6.581 46.981

Table 8-24: t-test for Prior Programming (C-derived languages)

84.72 Analysisof Results

Theresults al point towards no advantage or disadvantage on this exam if a student
has programming prior to taking CS1 and CS2. The further breakdown of looking at
prior Java experience not affecting scores is encouraging and supports the assertion that
the test is not atest of language, but rather of concepts. Looking at all C-derived
languages and seeing no difference in performance indicates that experience with
languages with similar syntax does not impact performance on the exam if the decision
rule isinterpreted strictly. However, because the p-value is right on the border of

significance, it is actually difficult to make a claim either way about this result.

8.4.8 First Programming L anguage

In gathering information about the first language that students ever programmed in,
the students were asked to pick from the languages, C, C++, Java, VB, Basic, or, if the

student selected “other”, to specify what language was their first. The other languages

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 273

that studentsindicated were: Logo, Karel, HTML, Foxpro, ActionScript, FORTRAN,

and Pascal.

8481 Statistical Results

The analysis of first programming language compared students who indicated that
their first programming language was Java (n = 20, M = 234.85, SD = 48.148) versus
those who indicated another language (n = 57, M = 242.82, SD = 55.234). Table 8-25
shows the results of the independent samples t-test for scores on the exam. As can be
seen from the table, there was no significant difference between the two groups in their

scores on the exam.

t-test for Equality of Means

95% Confidence

Mean Std. Error Interval of the
t df p Difference Difference Difference
L ower Upper
Exam Scores -.573 75 .568 -7.975 13.911 -35.688 19.739

Table 8-25: t-test for First Language (Java vs. not Java)

8.4.82 Analysisof Results

Significant differencesin Javafirst programmers and non-Javafirst programmers
would point towards a tendency in the exam to rely too heavily on the language of
implementation of the coding examples and not on the larger CS1-CS2 concepts.

Because this test did not show a significant difference in the performance of the two

274 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

groups, it helps to support the premise that the exam is not testing programming language

skills.

8.5 Gradesin CSl1 and CS2 (including Exam Score)

Data was a'so collected on each of the student’s performance in CSE 115 and CSE
116 through the collection of their recorded letter grade for each course. These letter
grades were then converted to a 4.0 scale using the weightings given earlier in Table 8-6.
Once these grades were converted to the 4.0 scale, the 115 and 116 grades were averaged

together to produce an average grade across CS1 and CS2.

8511 Statistical Results

The analysis of letter grades for CS1 and CS2 proceeded in three ways. Thefirst
analysis looked for a correlation between scores on the exam and letter gradesin CS1.
Figure 8-3 shows the scatter plot of CSE 115 grades and total points on the exam. We

can see from this graph evidence of arelationship between the two variables.

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 275

350
o
8 3
. o
300 5 9
E = e E
: ° o o @
] o
£ 250 2 o 8 <
o o o o] 2] o
- o] o
o o
@ 8 o
E ° o] Q
w o 8 o 8
.ﬂ 200 o 8 o o
[o o o
o
o g 8 o
2 o
150 o e
o B
100
| I T T T T I
1.00 1.50 2.00 2.50 3.00 350 4.00

115 Grade on 4.0 Scale

Figure 8-3: Plot of Points Earned on Exam vs. CSE 115 Overall Course Grade

To analyze whether or not there was a correlation between these two variables,
Pearson’s correlation coefficient (one-tailed) was computed®™. These two measures were

positively correlated r(96) = 0.692, p < 0.01.

% Pearson’s correlation coefficient is a descriptive statistic used to describe the degree and direction of
linear correlation within the particular group studied (Aron 2002).

276 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

The second analysis looked for a correlation between scores on the exam and letter
gradesin CS2. Figure 8-4 shows the scatter plot of CSE 116 grades and total points on
the exam. We can see from this graph evidence of arelationship between the two

variables.

350
o
¢ g
300 8 B
- 3 8 o
5 2 a
: o § ®©
o B8
o 2507 o © 8 s}
@ o 8 g o}
=
= 8 o]
L+ 1] 8 O
. ¢ ° 8 g
L w4 o o g
=]
2 8
= o g
5 o
- o 2
1504 @ o o
o o @
100
| T I
0.00 2.00 4.00

116 grade on 4.0 scale

Figure 8-4: Plot of Points Earned on Exam vs. CSE 116 Overall Course Grade

To analyze whether or not there was a correlation between these two variables,
Pearson’s correlation coefficient (one-tailed) was computed. These two measures were

positively correlated r(99) = 0.777, p < 0.01.

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 277

The third analysis |looked for a correlation between scores on the exam and averaged
letter grade for CS1 and CS2. Figure 8-5 shows the scatter plot of the average of CSE
115 and CSE 116 grades and total points on the exam. We can see from this graph

evidence of arelationship between the two variables.

350 -
(o}
o}
o g g
300 -
o 8
g ;. 8§ o8
» &g g Q
2 8 Q e g e
g O o ©
o 250 o o 8
o o o © =
E 8 g °
= o
o & o o
(0]
t By & o o °
= 200 [s] a
Q o oy @
[=
> B8 o
g & 2 o
2 o
150 o o o
o [¢] o
100 =
1 I T T T | I
1 15 2 25 3 35 4

Average of 115 and 116 grades

Figure 8-5: Plot of Points Earned on Exam vs. Averaged CSE 115 & CSE 116 Overall Course Grade

To analyze whether or not there was a correlation between these two variables,
Pearson’s correlation coefficient (one-tailed) was computed. These two measures were

positively correlated r(96) = 0.816, p < 0.01.

278 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

8512 Analysisof Results

The results of the analysis of the correlation were as hoped for. If students performed
well in CSE 115 or CSE 116 or both, the test should reflect that. It is desired that
students who do well in those courses overall would do well on this exam. That is what

the statistical evidence shows.

However, it can be argued and should be argued that the analysis of CS2 (CSE 116) is
skewed because the grade that the students received on the exam was used in computing
their CS2 grades. Therefore, additional analysis was performed on their CS2 grades with

the exam score removed.

8.6 Gradesin CSl1 and CS2 (Exam Score Removed)

To complete the analysis of the CS2 grade with the exam score removed, the
instructors for the courses were asked to provide the way the final course grades were
computed for each student. Then, the exam was removed and the final course grade
recomputed to get anew letter grade. These letter grades were then converted using the
same 4.0 scale given previously in Table 8-6. Once again, the grade for 115 and the new

116 grade were average together to produce an average grade across CS1 and CS2.

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 279

8.6.1.1 Statistical Results

The analysis of CS1 scores was not repeated at this time because the grades for CS1

did not change.

A new analysis performed looked for a correlation between scores on the exam and
letter grades in CS2 computed without the exam score factored in. Figure 8-6 shows the
scatter plot of the new CSE 116 grades and total points on the exam. We can see from

this graph evidence of a relationship between the two variables.

s o §
300 g8
o
e o 8 g
° g ¢
3 250 o 8 8 o
o o 5 8 = =
] 0 o
E o
= o © 8 8 8
W 200 o 8 5
o
o
O o o e
- o
o
104 © o o]
o o o

1004

| T I
0.00 200 4.00

Revised 116 Score on 4.0 Scale

Figure 8-6: Plot of Points Earned on Exam vs. Revised CSE 116 Overall Course Grade

280 CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYSS

To analyze whether or not there was a correlation between these two variables,
Pearson’s correlation coefficient (one-tailed) was computed. These two measures were

positively correlated r(99) = 0.757, p < 0.01.

The second new analysis looked for a correlation between scores on the exam and
averaged letter grade for CS1 and CS2. Figure 8-7 shows the scatter plot of the average
of CSE 115 and revised CSE 116 grades and total points on the exam. We can see from

this graph evidence of a relationship between the two variables.

350
o
o
o g °8
300 o 8
o » g
e g © o 2
8 (8] 8 9
O o
@ 250 o o 8 8
= o O a
= g o o o
0] o o ©
E o] [a]
s 8 o) 9
o O
W 200~ (8] =] 8
8
¢ ¥ g o
5 o
150 4 2 o o
o o] e
100

| I T T T T I
1 15 25 3 35 4

2
115 & Revised 116 Averages on 4.0 Scale

Figure 8-7: Plot of Points Earned on Exam vs. Averaged CSE 115 & CSE 116 Overall Course Grade

CHAPTER 8 EXPERIMENTAL RESULTSAND ANALYS S 281

To analyze whether or not there was a correlation between these two variables,
Pearson’s correlation coefficient (one-tailed) was computed. These two measures were

positively correlated r(96) = 0.806, p < 0.01.

8.6.1.2 Analysisof Results

The results of the analysis of the correlation were as hoped for. If students performed
well in CSE 115 or CSE 116 or both, the test should reflect that. It is desired that
students who do well in those courses overall would do well on this exam. That is what

the statistical evidence shows.

282

Chapter 9
Discussion

The work of this dissertation sought to create a language-independent assessment for
the programming-first introductory computer science courses based on the

recommendations of the CC2001 curriculum document.

9.1 Discussion of Exam Creation Process

During the development of the instrument, the CC2001 recommendations were
analyzed. Through this analysis, decisions were made to focus the assessment on the
programming-first approaches to the curriculum (imperative-first, objects-first, and
functional-first). These decisions prompted the decision that the exam needed to choose
alanguage of implementation for code examples and student answers. However, the
inclusion of alanguage in the exam made it imperative to create questions that did not
rely on specific syntactically-oriented features of the particular language of
implementation, but rather general introductory computing concepts that were simply

illustrated by code examples.

A core group of topics was identified from the CC2001 recommendations as common

to all the programming-first approaches. This group was only large enough with the
283

284 CHAPTER 9 DISCUSS ON

inclusion of both the CS1 and CS2 course, making the exam an assessment for the entire

first year of instruction in computer science.

The exam was created using the topic list identified as well as the learning objectives
givenin CC2001. Also, agrading guideline was created for the exam to be used for
consistent scoring of the exam. Once the test was created, the reliability and validity of

the instrument needed to be evaluated by administering it to a sample student population.

After the administration, the exam was scored using the grading rubric created and
the results of using the grading rubric were studied. For multiple graders, some
inconsistencies in grading were uncovered. Some of these inconsistencies were related to
simple human error, while others necessitated changes or clarificationsin the grading
rubric and re-grading of some questions. Recommendations for the grading of this exam
based on the process used in this study include anonymous grading and the use of
multiple graders for both the subjective and non-subjective questions on the exam to

maximize consistency with the established grading guidelines.

9.2 Discussion of Analysis of Exam

Following the administration and grading, the scores of the students were statistically
analyzed to gather information about the validity and reliability of the instrument as well

asto look for potential exam biases.

Face and content validity information was gathered by asking a panel of five experts

in the field to analyze the appropriateness of this exam as an assessment of introductory

CHAPTER 9 DISCUSS ON 285

computer science. These experts gave numerous suggestions for improvements of the
exam as well as ways to decrease the number of questions by eliminating duplication. It
isimportant to note that even though the information gathered from these expertsis used
for establishing face and content validity of the exam, this analysis was completed and

changes to the exam implemented before administration to the sample popul ation.

Despiteinitial fears expressed by the reviewers of the exam being too long, the
students finished, on average, in an acceptable time frame. Furthermore, statistical
analysis showed that the time students used on the exam did not have a statistically

significant correlation with their performance.

After the exams were scored, the scores of the students underwent various statistical
tests. Thefirst wasto look for reliability of the instrument. Cronbach’s alphawas
computed for the instrument, revealing an acceptable reliability coefficient of .94. These

results indicate that the exam isinternally consistent.

Using the demographic data that was collected from the students while administering
the exam, preliminary investigations were undertaken to look for exam bias based on
gender, age, major, and previous programming experience. The results of these analyses
were promising, because no biases were found in the data gathered and analyzed so far.
There was no statistically significant difference in scores between the two genders,
between freshmen and non-freshmen students, or between intended majors and non-

majors.

286 CHAPTER 9 DISCUSS ON

While previous programming experience before taking the CS1-CS2 sequence did not
make a difference in the scores, a borderline statistically significant result (p=0.05, but
not less than 0.05) was found for students who had experience with C-derived languages
before taking the CS1-CS2 course and this exam. Because of the borderline nature of the
result, further research should involve the collection of more data for analysisto seeif
there definitely is a difference that can be detected between those with previous

experience with C-derived languages and those who have no previous experience.

An attempt was made to show the criterion validity of the exam by using overall
course gradesin the CS1 and CS2 courses. The results of this analysis revealed that the
exam score and course grades in CS1, CS2, and the average of the CS1-CS2 sequence
positively correlated with one another. The original CS2 grades would have included the
exam score within their computation. CS2 scores and the CS1-CS2 average were
recomputed with the exam score removed, and a positive correlation was still found.
This result strengthens the validity of the exam for use as an assessment of the CS1-CS2

sequence.

Overall, the work of this dissertation achieved its goals of creating an assessment for
the programming-first approaches to the introductory curriculum that has been shown
reliable. Also, work on the face validity, content validity, and criterion validity has been

undertaken, with all results pointing to an overall validity of the instrument for its task.

CHAPTER 9 DISCUSS ON 287
9.2.1 Studentswho chose not to participatein study

Since participation in the study was voluntary, there were students enrolled in the
CS2 course (CSE 116) when the exam was administered that chose not to be included in
the study. It isimportant to look at this group of studentsin general to seeif the sample
used in the study was indicative of the genera population of students enrolled in the CSE

116 course.

The information for the courses is available to instructors through their university
classlists. From the data available to the instructors, | was able to obtain anonymous
information about total enrollments, gender, year in school, declared major, and final
student letter grades assigned in the course for the entire CSE 116 population across the
two semesters the exam was administered. This information was obtained by the
instructors from the information provided to them on their official university classlists.
Therefore, some of the demographic information obtained in the study was not available
for students that did not participate in the study. However, with the information that is
available about the enrollment overall, we can see a picture of any potential differences

between those students who participated in the study and those students who did not.

9211 Overall enrollment

Thetotal enrollment of students for the two semesters of the study was 135 students.
Of thisoriginal 135, 14 students elected to resign the course before the end of the

semester and receive agrade of “R” on their transcript. Thisleft a potential candidate

288 CHAPTER 9 DISCUSS ON

pool of 121 total students for participation in the study. Of these 121, 100 students
elected to participate, leaving only 21 students not participating in the study. Therefore,

83% of the available student population was analyzed by the study.

9212 Gender

Of the 121 students, 110 (91%) were men and 11 (9%) were women. Ninety (90%)
men and 10 (10%) women chose to participate in the study. Therefore, the percentage of

men and women in the study population and the regular population were similar.

9213 Year in School

Of the 121 students, 45 (37%) were categorized by the university as freshmen, and 76
(63%) were categorized as non-freshmen. Fifty-two (52.5%) freshmen and 47 (47.5%)
non-freshmen agreed to participate in the study. These numbers seem to have an obvious
conflict, because more freshmen are enrolled in my study than are reported by the
university records. However, this discrepancy can be explained by the fact that the
university considers class year by credits earned, not by how many years a student has
been enrolled at the university. Therefore, many “freshmen” entering the university
actually have accumulated university credit before they even take one day of classes at
the university. In my study, the year in school was a self-reported variable. Therefore,
studentsin their first year of study at university commonly identify themselves as

freshmen, even if the university records indicate otherwise.

CHAPTER 9 DISCUSS ON 289

9214 Declared Major

Of the 121 students, 37 (31%) were declared computer engineering majors, 46 (38%)
were declared computer science majors, and 38 (31%) were declared to be some other
major (including undecided). Twenty-six (26%) computer engineering majors, 50
(50.5%) computer science majors, and 23 (23.5%) other majors agreed to participate in

the study.

These numbers are also subject to the same self-report-versus-university-records
problems as the year in school. At the University at Buffalo, students do not have to be
formally accepted to amajor until the end of their second year of study. Therefore, many
students intend to pursue a particular major, but, since they have not been formally
accepted to that major yet, the university does not recognize them as majoring in that
subject. Also, a student may have decided to pursue amajor and not yet informed the
University of their intent at the time of the creation of the classlists. Nonetheless, the
numbers for students overall in the class and the students enrolled in the study are

roughly the same.

9215 Gradein course

Table 9-1 gives a breakdown of course grades earned by the 121 students enrolled in
CSE 116 with a percentage breakdown of the grade within the class, aswell asthe
number of those students who participated in the study and a percentage of how many

students who earned each |etter grade participated in the study.

290 CHAPTER 9 DISCUSS ON

Recorded Number Percentage of Number of Percentage of
Course Grade of students overall study students who
students earning grade participants participated in study

A 18 15% 17 94%

A- 18 15% 16 89%

B+ 25 21% 22 88%

B 19 16% 16 84%

B- 8 7% 7 88%

C+ 10 8% 8 80%

C 7 6% 6 86%

C- 3 2% 2 67%

D 3 2% 2 67%

F 10 8% 4 40%

Table 9-1: Course grade breakdown for all CSE 116 students

Table 9-2 gives a breakdown of course grades earned by the 21 students who elected

not to participate in the study.

Recorded Course Number of students
Grade who earned that grade
A
A-
B+
B
B_
C+
C
C_
D

F

Table 9-2: Course grade breakdown for CSE 116 students who elected not to particpate in the study

DR FPIRPINRFPWWN|EF

Those students who el ected not to participate in the study were fairly spread
throughout the grade spectrum. The only group of students who did not seem to

particpate at the same rate as the other students were those students who received an

CHAPTER 9 DISCUSS ON 291

overal grade of Finthe course. Only 40% of the F-students participated in the study,

while other groups of students had participation rates that ranged from 67% to 94%.

Upon further investigation, it turns out that only 116 students total took the exam
across the two administrations, which means that 5 students did not attend the final exam
at al and therefore could not elect to participate in the study. It is hypothesized that the
students who did not take the final exam were among the students who earned an overall
grade of Fin the course, because, with the weighting that the final exam was given for
the course, it would be almost impossible for a student to pass the course without taking

the final exam.

Therefore, between the 4 students who did particpate and the 5 who did not take the
exam, it appears that only 1 student who earned an F in the course did not participate in
the study, keeping the participation rate of students who earned an F similar to those

students who earned other |etter grades.

9.21.6 Conclusionsabout Participants

Comparing the data gathered from university records to the data collected about the
participants in the study, | feel confident in saying that the sample represented in the
study is not significantly different from the overall possible pool of students enrolled in
CSE 116. There were relatively very few students who did not participate. There was

virtually no difference in gender, year in school, major, or overall course performance as

292 CHAPTER 9 DISCUSS ON

indicated by overall course grade. Therefore, | feel confident to conclude that the results

of the study were not skewed in any way by the self-selection of participants in the study.

9.3 FutureWork

This section presents directions for future work on this assessment instrument.

931 Additional Student Data

Although the data collected for this dissertation were adequate for analysis of the
exam’ s reliability and hel ped to make preliminary assertions about the exam’ s validity, a
future goal isto collect even more data about the exam by administering the test to more
students. With additional data, more detailed item analysis can be performed. With this
type of analysis, trends might be found in the exam to suggest that certain questions could

be eliminated without affecting overall student outcomes.

These types of analyses could also identify a group of questions that are the predictors
for astudent’s score on the exam. If these questions were identified, it might be possible
to edit the exam so it contains just those questions, or equivalent derivatives of those
questions, which would make the exam shorter. Alternatively, some questions might be

replaced by items that would improve the reliability and validity of the exam.

Additionally, more demographic data could be collected to continue the investigation
into test bias. Most notably, the number of females who took the test was large enough to

perform statistical analysis; it is not enough to satisfy the question of gender bias on the

CHAPTER 9 DISCUSS ON 293

exam. Other areas of the demographics can also continue to be explored, including age,

major, and additional programming language experience.

9.3.2 Continuation of Predictors Research

Thiswork was inspired by work in the area of predictors of successin CS1 (Ventura,
2003). Ventura gathered various pieces of demographic information as well as
administered atest of critical thinking ability to find the best predictors for successin an
objects-first CS1. His measure for success included course grades on various
components and was never validated. Our assessment instrument has been shown
reliable and information has been presented for validity. This instrument could be used
as the measure for success for the predictors research. However, this assessment isa
measure of success for CS1 and CS2. Theinitial work on predictors would need to be
revisited to include predictors for CS2 aswell as CS1. Only then could the assessment

that | created be used for further examination of this work.

9.3.3 Testingof curricular changes

One of theinitial goalsin creating this assessment was to have the ability to useit to
measure the effectiveness of curricular changes. Since the exam is based on the content
for the introductory sequence as outlined by CC2001, it can provide a baseline indicator
of what information the students should know after completing the CS1 and CS2

sequence.

294 CHAPTER 9 DISCUSS ON

Therefore, if this test was administered at the end of a year and then curricular
changes were made for the next year, one would expect that the scores on the exams
would not be statistically significantly different, or if they were different, that an
improvement of overall the scores would be viewed as an affirmation of the value of the

curricular changes.

A decrease in the overall scores could point to afailure of the new curricular
direction. However, that cannot be the immediate conclusion based on this type of result.
There could be many other factors impacting performance of a group of students on any
exam, and they should be explored. It would be best if scores on this exam could be
observed both before the curricular change and after the change to give an adequate

picture of the student performance as it relates to the curricular change.

9.34 Trendsand Longitudinal Research

Another way that this assessment could be used is simply to track general trends of
student performance irrespective of curricular innovation. Genera performance of
students across years, semesters, and instructors would be possible if each group of

students were given this assessment at the end of CS2.

Additionally, longitudinal tracking would be possible of students who took the
assessment. Students who took the assessment could be tracked throughout their careers
to look for any predictive value of this assessment in their future success in their studies

of computing.

CHAPTER 9 DISCUSS ON 295
9.35 Multiple Languages and M ultiple Forms

Initially, this assessment was conceived as being language-independent. However,
early in the work on the instrument and because of the instrument’s focus on
programming-first approaches to the curriculum, it was decided that alanguage needed to
be used for code examples and for student answers. Therefore, a natural extension of this
work isto modify the exam for use in CS1-CS2 sequences that do not use Java as their
main language of instruction. A change to another language would involve the
modification of questions and code examples used within the test as well as analysis of
the grading rubric to ensure that none of the answers to questions would be affected by

the change in language.

To further reinforce the reliability data collected, equivalent forms of the exam should
also be created and administered to students. Ideally, these parallel forms should be
created for the Java version of the exam as well as the other language versions. Inthe
effort to create parallel forms, it would be useful to create an exam template that could be
easily changed to create new forms of the exam quickly and for the same administration

of the exam.

Another change to the exam that could be considered an alternate form is to create a
better alternative for the multiple choice questions on the exam, either with Scantron (or
similar) technology, or away to put questions on a computer-delivered testing system to

help automate grading of those questions.

296 CHAPTER 9 DISCUSS ON
9.3.6 Multi-Institutional Analysis

To further reinforce the reliability and validity data collected, the exam needs to move
outside of the walls of the University at Buffalo. Thiswould allow the creation of testsin
different languages as talked about previously, but also to allow for introductory

sequences taught in the different approaches to use the exam.

Testing students who have been taught with an imperative-first or functional-first
approach would provide further evidence of the validity of the instrument across the

different programming-first approaches.

Furthermore, having other instructors administer and grade the exam will alow for

further testing of the administration processes and grading rubric for the exam.

Another advantage of porting the instrument to other institutions comes simply from
the organization of the institution. Our department is a computer science and engineering
department, servicing both computer science and computer engineering magjors. Other
departments might simply only serve computer science majors, or amix of computer
science and information technology majors in their CS1-CS2 sequence. Analysis of data
from these types of departments would allow further conclusions to be drawn about exam

bias for different magjors.

CHAPTER 9 DISCUSS ON 297
9.3.7 Updates for Future Curricula

As| tell my students, computing and computer scienceis afield that is constantly
changing. Thereisno way to tell where the field will be or what will be taught in CS1-
CS2 five or ten years from now. Simply looking at the curriculum reports of the past can
show us how the field has changed. Therefore, this exam can never be static in the face
of curricular change. When new curriculum documents are published and schools begin
to adopt the new recommendations, this assessment for the CS1-CS2 sequence needsto

adapt and change accordingly.

In the face of change, it should be noted that the process used to create this
assessment can be repeated when new curriculum documents are produced. Changes to
the curriculum would most certainly necessitate updates for the exam and questions
contained within it, but the practice of finding a common intersection could easily be

repeated.

298

References

10.

ACM/IEEE-CS Joint Curriculum Task Force Curricula. Computing Curricula
1991, [1991 cited 2003]. Available from
http://www.acm.org/education/curr91/homepage.html.

ACM/IEEE-CS Task Force on Computing Curricula 2001. Final Report of the
Joint ACM/IEEE-CS Task Force on Computing Curricula 2001 for Computer
Science [2001 cited 2007]. Available from
http://acm.org/education/curric_vols/cc2001.pdf.

Alphonce, Carl, and Philip R Ventura. "Object-Orientation in CS1-CS2 by
Design.” In ITiCSE 2002. Aarhus, Denmark, 2002.

AP. AP Course Descriptions, 2003 [cited November 13, 2003]. Available from
http://apcentral .collegeboard.com/repository/ap03_cd_computer_scie 4315.pdf

AP CS A Réliability. Advanced Placements CS A Exam Reliability, 2004 [cited
October 15 2004]. Available from

http://apcentral .collegeboard.com/article/0,3045,152-167-0-
2021,00.htm#reliability.

AP CS A Test Description. 2004 [cited November 7 2004]. Available from
http://apcentral .collegeboard.com/memberg/article/1,3046,152-171-0-
22913,00.html.

AP CS AB Réliahility. Advanced Placements CS AB Exam Reliability, 2004 [cited
October 15 2004]. Available from

http://apcentral .collegeboard.com/article/0,3045,152-167-0-
2021,00.htm#reliability.

AP CS AB Test Description. 2004 [cited November 7 2004]. Available from
http://apcentral .collegeboard.com/members/article/1,3046,152-171-0-
22912,00.html.

AP CS Development Committee. 2004 [cited November 7 2004]. Available from
http://apcentral .collegeboard.com/members/article/1,3046,152-167-0-
2030,00.html.

AP Exam Grading. 2004 [cited November 7 2004]. Available from
http://www.apcentral .coll egeboard.com/article/0,3045,152-167-0-1994,00.html.

299

300 REFERENCES

11. AP Validity. Exam Validation, 2004 [cited October 21 2004]. Available from
http://apcentral .collegeboard.com/article/0,345,152- 167-0-2052-00.html .

12. Aron, Arthur, and Elaine N. Aron. Statistics for the Behavioral and Social
Sciences. A Brief Course. Second ed. Upper Saddle River, NJ: Prentice Hall, 2002.

13. Astrachan, Owen, and David Reed. "AAA and Csl." In SIGCSE 1995. Nashville,
TN, 1995.

14. Bond, lan. lan Bond - Assignment 2, 2004 [cited January 27, 2005]. Available
from http://www.massey.ac.nz.~iabond/159234/assignment2.pdf.

15. Cantwell Wilson, Brenda, and Sharon Shrock. "Contributing to Successin an
Introductory Computer Science Course: A Study of Twelve Factors." In SIGCSE
2001. Charlotte, NC, 2001.

16. Committee on Computer Science Curriculum. "Curriculum 68: Recommendations
for the Undergraduate Program in Computer Science." Communications of the
ACM 11, no. 3 (1968): 151-97.

17. Committee on Computer Science Curriculum. "Curriculum 78: Recommendations
for the Undergraduate Program in Computer Science." Communications of the
ACM 22, no. 3 (1978): 147-66.

18. Cooper, Steven, Wanda Dann, and Randy Pausch. "Teaching Objects-First in
Introductory Computer Science.” In 34th SIGCSE technical symposium on
Computer Science Education. Reno, Nevada, 2003.

19. Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. Cambridge, Massachusetts: The MIT Press, 2000.

20. CS Content Rep Study. Content Representativeness Study GRE, 2002 [cited
December 3 2004]. Available from http://ftp.ets.org/pub/gre/conrepresul ts.pdf.

21. Culwin, Fintan. "Object Imperatives!" In SIGCSE 1999. New Orleans, LA, 1999.

22. Dade Computer Programming | Description. Computer Programming |. Pdf, 2001
[cited March 16, 2007 2007]. Available from
http://portal .dadeschool s.net/cbc/V ol ume%201 /1 nstructional %20T echnol ogy/Senio
r%20High/Grade%2010/Computer%20Programming%620I.pdf.

23. Daly, Charlie, and John Waldron. "Assessing the Assessment of Programming
Ability." In SIGCSE 2004. Norfolk, VA, 2004.

24. Dann, Wanda, Steven Cooper, and Randy Pausch. Learning to Program with Alice.
Upper Saddle River, NJ: Prentice Hall, 2006.

REFERENCES 301

25. Decker, Adrienne. "A Tale of Two Paradigms.” Journal of Computing Sciencesin
Colleges 19, no. 2 (2003): 238-46.

26. Dietel, H. M., and P.J. Dietel. C: How to Program. Fourth Edition ed. Upper
Saddle River, New Jersey: Prentice Hall Inc., 2004.

27. Dietel, H. M., and P.J. Dietel. C. C++: How to Program. Fifth Edition ed. Upper
Saddle River, New Jersey: Prentice Hall Inc., 2005.

28. Dietel, H. M., and P.J. Dietdl. C. Java: How to Program. Sixth Edition ed. Upper
Saddle River, New Jersey: Prentice Hall Inc., 2005.

29. ETS. ETS Mgjor Field Test, 2003 [cited 2003]. Available from
http://ftp.ets.org/pub/corp/heal ContComSci 2.pdf

30. ETS Magjor Field Test Description. 2004 [cited November 7 2004]. Available from
http://ftp.ets.org/pub/corp/hea/ ContComSci 2.pdf.

31. ETS Reliability. ETS Major Field Test Computer Science Reliability, 2004 [cited
October 15 2004]. Available from http://ftp.ets.org/pub/corp/healreliability03.pdf.

32. Evans, Gerald E., and Mark G. Simkin. "What Best Predicts Computer
Proficiency.” Communications of the ACM 32, no. 11 (1989): 1322-27.

33. Evans, M.D. "A New Emphasis & Pedagogy for a CS1 Course." inroads - The
SIGCSE Bulletin 28, no. 3 (1996): 12 - 16.

34. Fincher, Sally. "What Are We Doing When We Teach Programming?* In 29th
ASEE/IEEE Frontiers in Education Conference. San Juan, Puerto Rico, 1999.

35. GRE Score Use. Guide to the Use of Scores, 2003 [cited 2003]. Available from
http://www.ets.org/M edia/ Tests/ GRE/pdf/994994. pdf

36. GRE Subject Test Computer Science Description. 2004 [cited November 8 2004].
Available from http://www.gre.org/subdesc.html#compsci.

37. GRE Subject Test Genera Description. 2004 [cited November 8 2004]. Available
from http://www.gre.org/pbstest.html.

38. Guzdial, Mark, and Barbara Ericson. Introduction to Computing and Programming
with Java: A Multimedia Approach. Upper Saddle River, NJ: Prentice Hall, 2006.

39. Guzdial, Mark, and Elliot Soloway. "Teaching the Nintendo Generation to
Program.” Communications of the ACM 45, no. 4 (2002): 17-21.

40. Hagan, Dianne, and Selby Markham. "Does It Help To Have Some Programming
Experience before Beginning a Computing Degree Program?' In I TiCSE 2000.
Helsinki, Finland, 2000.

302

41.

42.

43.

44,

45.

46.

47.

49,

50.

51.

52.

53.

54.

55.

REFERENCES

Hanly, Jeri R., and Elliot B. Koffman. Problem Solving and Program Designin C.
Fourth Edition ed. Boston, Massachusetts: Addison-Wesley, 2003.

Harvey, Brian, and Matthew Wright. Simply Scheme: Introducing Computer
Science. Second Edition ed. Cambridge, Massachusetts: The MIT Press, 1999.

Hayes, Brian. "The Semicolon Wars." American Scientist 94, no. July-August
(2006): 299-303.

Horstmann, Cay. Big Java. Second ed. Hoboken, New Jersey: John Wiley & Sons,
Inc., 2006.

Joint Task Force on Computing Curricula. Curricula Recommendations, 2001
[cited 2007]. Available from http://www.acm.org/education/curricula.html.

Kaplan, R M, and D P Saccuzzo. Psychologica Testing: Principles, Applications
and Issues. Belmont, Californiac Wadsworth/Thomson Learning, 2001.

Kolling, Michael, and David J. Barnes. "Enhancing Apprentice-Based Learning of
Java." In SIGCSE 2004. Norfolk, VA, 2004.

.Kuncel, N. R, S. A. Hezlett, and D. S. Ones. "A Comprehensive Meta-Analysis of

the Predictive Validity of the Graduate Record Examinations. Implications for
Graduate Student Selection and Performance.” Psychological Bulletin 127, no. 1
(2001): 162-81.

Kurtz, Barry L. "Investigating the Relationship between the Development of
Abstract Reasoning and Performance in an Introductory Programming Class." In
SIGCSE 1980. Kansas City, MO, 1980.

Leeper, R. R., and J. L. Silver. "Predicting Success in a First Programming
Course." In SIGCSE 1982. Indianapoalis, IN, 1982.

Lewis, John, and William Loftus. Java Software Solutions: Foundations of
Program Design. Fifth Edition ed. Boston, Massachusetts: Addison-Wesley, 2007.

Lister, Raymond, and John Leaney. "Introductory Programming, Criterion-
Referencing, and Bloom." In SIGCSE 2003. Reno, NV, 2003.

Major Field Test. Major Field Tests: Description of Test Reports, 2003 [cited
2003]. Available from http://ftp.ets.org/pub/corp/heal ContComSci 2.pdf

Major Field Test. Reliability Coefficients and Standard Error of Measurements,
2002 [cited 2003]. Available from http://ftp.ets.org/pub/corp/healreliability03.pdf.

Major Field Test Content. Magjor Field Tests Computer Science Description, 2003
[cited 2003]. Available from http://ftp.ets.org/pub/corp/hea/ ContComSci 2.pdf

REFERENCES 303

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.

67.

Marion, William. "CS1: What Should We Be Teaching?' inroads - The SIGCSE
Bulletin 31, no. 4 (1999): 35-38.

Marshall, JC, and L W Hales. Essentials of Testing. Reading, M assachusetts:
Addison-Wesley Publishing Company, 1972.

Mazlack, Lawrence J. "Identifying Potential to Acquire Programming Skill."
Communications of the ACM 23, no. 1 (1980): 14-17.

McCauley, Renee. "Rubrics as Assessment Guides." inroads - The SIGCSE
Bulletin 35, no. 4 (2003): 17 - 18.

McCracken, Michael, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, lan Utting, and Tadeusz
Wilusz. "A Multi-National, Multi-Institutional Study of Assessment of
Programming Skills of First-Year Cs Students: Report by the ITiCSE 2001
Working Group on Assessment of Programming Skills of First-Year CS Students.”
inroads - The SIGCSE Bulletin 33, no. 4 (2002): 1-16.

Morgan, R., and L. Ramist. Advanced Placement Studentsin College: An
Investigation of Course Grades at 21 Colleges ETS, 1998 [cited November 8
2004]. Available from

http://apcentral .collegeboard.com/repository/ap01.pdf.in_7926.pdf.

Moskal, Barbara, Keith Miller, and L. A. Smith King. "Grading Essaysin
Computer Ethics: Rubrics Considered Helpful." In SIGCSE 2002. Covington, KY,
2002.

Nagappan, Nachiappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Ka Y ang,
Carol Miller, and Suzanne Balik. "Improving the CS1 Experience with Pair
Programming." In SIGCSE 2003. Reno, Nevada, 2003.

. Neebel, Danial J., and Brenda Tuomi Litka. "Objective Based Assessment in a

First Programming Course." In 32nd ASEE/IEEE Frontiersin Education
Conference. Boston, MA, 2002.

Owens, Barbara Boucher, Robert D. Cupper, Stuart Hirshfield, Walter Potter, and
Richard Salter. "New Models for the CS1 Course: What Are They and Are They
Leading to the Same Place?' In SIGCSE 1994. Phoenix, AZ, 1994.

Parker, Peter E., Paul D. Fleming, Steve Beyerlein, Dan Apple, and Karl Krumsieg.
"Differentiating Assessment from Evaluation as Continuous Improvement Tools."
In 31st ASEE/IEEE Frontiersin Education Conference. Reno, NV, 2001.

Pattis, Richard. "The "Procedures Early" Approachin CS1: A Heresy." In SIGCSE
1993. Indianapoalis, IN, 1993.

304

68. Proulx, Viera, Richard Rasala, and Harriet Fell. "Foundations of Computer
Science. What Are They and How Do We Teach Them?" In 1st conference on
integrating technology into computer science education. Barcelona, Spain, 1996.

69. Ramalingam, Vennila, and Susan Wiedenbeck. "Development and V alidation of
Scores on a Computer Programming Self-Efficacy Scale and Analyses of Novice
Programmer Self-Efficacy.” Journal of Educational Computing Research 19, no. 4
(1998): 367-81.

70. Rapaport, William J. How | Grade (the Triage Theory of Grading), 2006 [cited July
11 2006]. Available from
http://www.cse.buffal 0.edu/faculty/rapaport/howigrade.html.

71. Ravid, R. Practical Statistics for Educators. Lanham: University Press of America,
1994,

72. Reges, Stuart. "Back to Basicsin CS1 and CS2." In SIGCSE 2006. Houston, TX,
2006.

73. Reges, Stuart. "Conservatively Radical Javain CS1." In SIGCSE 2000. Austin,
TX, 2000.

74. Reges, Stuart. "Resolved: Objects Early Has Failed." In SIGCSE 2005. St. Louis,
MO, 2005.

75. Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Boston: Addison-Wesley, 1999.

76. SAT Program Handbook. 2006 [cited 2007]. Available from
http://www.collegeboard.com/prod_downl oads/highered/ra/sat/2006-07-SAT-
Program-Handbook.pdf

77. Savitch, Walter. Absolute Java. Second ed. Boston, M assachusetts: Addison-
Wesley, 2006.

78. Sethi, Ravi. Programming Languages. Concepts and Constructs. Second ed.
Reading, Massachusetts: Addison-Wesley, 1996.

79. Stein, Lynn Andrea. "Interactive Programming: Revolutionizing Introductory
Computer Science." ACM Computing Surveys 28, no. 4es (1996).

80. Ventura, Philip R. "On the Origins of Programmers: Identifying Predictors of
Success for an Objects-First CS1." University at Buffalo, SUNY, 2003.

81. Walker, Henry M. "Notes on Grading." inroads - The SIGCSE Bulletin 32, no. 2
(2000): 18-19.

REFERENCES

REFERENCES 305

82. Whitfield, Deborah. "From University Wide Outcomes to Course Embedded
Assessment of CS1." Journal of Computing Sciences in Colleges 18, no. 5 (2003):
210-20.

306

Appendix A

Exam Questions

The actual exam begins on the next page to preserve the formatting of the original.

307

308 APPENDIX A EXAM QUESTIONS

Cour se Number CourseTitle Semester Year
Final Exam

Name (Print):

Signature:

Person#: Exam Number:

Exam Instructions:
Y ou have been assigned an exam number for this exam. The only place you should put your
nameison thisfirst page of thetest. Y ou should not put your name, UBIT name, person number,
or socia security number on any other page of this exam, answer sheet, or demographic
guestionnaire.

Feel free to write any scratch work in the exam booklet. However, the only answers that will be
scored are those that you write in pen on the answer sheet. If at any time, you need extra paper
for your work, please ask the exam administrators.

You are not allowed to refer to any outside materials (notes, books, reference materials, your
neighbor) while completing this exam.

The exam was designed to test information that students should know after the first year of
computer science/programming instruction, which corresponds to CSE 115 and 116 at UB.
Because of the general nature of the exam, there may be questions that you are unable to answer.
Y ou should leave those answers blank.

Some of the questions on this test present multiple choices for answers. Some of those questions
instruct you to pick as many answers as are appropriate. Be sure to read the question to
determine if you should indicate more than one answer for a particular question. If the question
requires only one answer and you have narrowed the choices down to two, you should make an
educated guess about the answer for the question.

If you have a question during the exam, please raise your hand and one of the exam
administrators will come to you and answer your question. Please do not walk to an exam
administrator with aquestion. The only time you should leave your seat is when you have
completed the exam and are ready to hand it in.

You will have three (3) hours to compl ete this exam. At the end of the three hours, you are
required to hand in your paper.

When you have completed the exam, you will take your demographic questionnaire, exam
booklet, and answer sheet to an exam administrator.

APPENDIX A EXAM QUESTIONS 309

1) Draw the binary search tree which results when the following items are inserted, in the order
giveninto aninitialy empty BST. [8 points]

Elements: 62, 55, 37, 106, 202

310 APPENDIX A EXAM QUESTIONS

Given the following BST, answer questions 2 — 3.

2) You call search (find) and are looking for the number 32. List of nodesthat are visited while
you are determining that 32 isnot in the BST. [3 pointg]

3) You want to delete 34 (the root) from thistree. Show one possible valid binary search trees
that could result from deleting the root. [8 points]

APPENDIX A EXAM QUESTIONS 311

For question 4, consider the following code segment:

java. util.HashMap<l nteger, String> mapOne =
new j ava. util . HashMap<Il nt eger,
String>();

java.util.HashMap mapTwo = new java. util. HashMap();

mapOne. put (1, “First nanme”);
mapTwo. put (1, “First nanme”);

String sl
String s2

= mapOne. get (1) ;

= mapTwo. get (1) ;

4) Which of the two assignments of “First name” to a String variable does not work correctly and
why? (Circle only one answer). [1 point]

a. Assignment to s1 does not work because get () returnsan Cbj ect ,notaStri ng.
b. Assignment to s1 does not work becauses1 isnotaStri ng.

c. Assignment to s1 does not work because HashMaps cannot use | nt eger s askeys.
d. Assignment to s2 does not work because get () returnsan Cbj ect ,notaStri ng.
e. Assignment to s2 does not work becauses2 isnotaSt ri ng.

f. Assignment to s2 does not work because HashMaps cannot use | nt eger s askeys.
g. Neither assignment works because get () returnsan Gbj ect ,notaStri ng.

h. Neither assignment works because neither s1 nor s2 isaSt ri ng.

i. Neither assignment works because HashMaps cannot use | nt eger s askeys.

6) Write the body of the following method named changeCol or s. The method takes as a
parameter, aj ava. util. Col | ecti on of j ava. awt . Col ors. ThechangeCol ors
method should call the method set Col or (j ava. awt . Col or), whichisinherited from

j avax. swi ng. JPanel , for each colorinthe Col | ect i on so that the user sees a changing
background color for the panel on their program. Y ou can assume that this method appearsin a
classthat extends JPanel soyou can simply call theset Col or method from within this
method. Y ou must use an iterator/for-each loop in your solution to this question to receive full
credit. [8 points]

voi d changeCol ors(java. util. Coll ection<java. awt. Col or >
col or sFor Backgr ound) {

312 APPENDIX A EXAM QUESTIONS

Assume you have created the following array in a program:
int[] holder = new int[50];

Use thisinformation to answer questions 6 — 9.

6) What is the maximum number of elements that can be stored by hol der ?[1 point]

7) At which index would the first integer in hol der be stored?[1 point]

8) At which index would the last integer in hol der be stored?[1 point]

9) Asyou are using the array in your program, you find out that you need to store more than the
maximum number of elements you listed in question 8. Y ou do not know how many more
elements you will be storing, just that you need more spacein your array. Y ou are asked to write
amethod, needMbr eSpace that takesin an array and performs the necessary operationsto
return alarger array with the same elements as the original, but with space to store additional
elements. Since you don’t know how many elements you will eventually need to store, you
should write the method body so that it could be called at alater timeif the array needsto get
bigger again. [8 points)

public int[] needMoreSpace(int [] original Array) {

APPENDIX A EXAM QUESTIONS 313

10) Fill inthe method below so that it creates and returns an array of sizesi ze and populates
the array with elements each of whose values is the square of the index at which the element is
stored. For example, at array index 3, the value 9 should be stored. [8 points]

public int[] arrayOf Squares (int size) {

11) Fill in the method below so that it returnst r ue if the value passed in as a parameter is
contained inside the matrix and returns false otherwise. [8 points]

publ i c bool ean contai ns(doubl e[][] matrix, double value) {

314 APPENDIX A EXAM QUESTIONS

12) Given the following UML diagram for adoubly linked list, fill in the method del et e below,
which isamethod in the List class and takes an element to be deleted and returns the deleted
element when finished. [8 pointg]

== intedace ==
Comparable

Mode int compareToiGbject o);
Comparable _element

Mode _next, _prev 5:7//

Mode (Comparable)
Comparable getElerment()
nid setElement (Cormparable) Lizt
Mode gethlextd)
nid setMextiMode n)
Mode getPrevi List)
nid setPrevitode n

Mode _head

Notes about the classesin the diagram:
* Node’sconstructor setsthevalue of _el enent to the value passed in and sets the
valueof _next and _prev tonul | . The other elements are simple accessors and
mutatorsfor _el enent, node, and_prev.

* Node holds an element that implements the interface Conpar abl e. Recall that aclass
that implements this interface has a method named conpar eTo that takesin an
bj ect obj , and returns a positive number if t hi s > obj , thevalue 0 (zero) if the
two are the same, or anegativevalueif this < obj.

e Li st sconstructor simply setsthevalue of _head tonul | .

publ i ¢ Conparabl e del et e(Conpar abl e el enent) {

APPENDIX A EXAM QUESTIONS 315

Use the following representation of atree data structure to answer questions 13 - 18.

13) What isthe value stored in the node that is the root? [1 point]

14) Give the value stored in one of the leaves of this structure. [1 point]

15) What isthe height of atree that just contains aroot and no other nodes? [1 point]

16) What isthe height of this structure? [1 point]

17) Give the value stored in the node that is the parent of n. [1 point]

18) Givethe values stored in all the children of m. [3 points]

316 APPENDIX A EXAM QUESTIONS

19) Given the following adjacency list for adirected graph, draw the graph structure it represents.
[8 points]

A — B > D

B —_— C

C — B > D > A
D =S D

E — F » C

F C

APPENDIX A EXAM QUESTIONS 317

Use the following representation of a graph to answer questions 20 and 21.

S
\ 1 -

| / IO
9 6 I'. t

20) Circle the letters of all of the words that accurately describe the graph above. [4.5 points]
a. directed
b. undirected
c. weighted
d. unweighted
e. simple
f. complete
g. acyclic
h. isomorphic
i. rooted

21) Circle the letters corresponding to all the pairs of nodes given that are adjacent in the above
graph. [4 points]

arands

b.tandn

c.dands

d.nandd

22) If adata structureislinear in nature (list, vector, etc), which implementation would perform
better asymptoticaly in alinear search. Circle one of the implementations listed: [1 point]

a. array-based

b. linked list-based

c. neither —they would both perform the same on the linear search.

318 APPENDIX A EXAM QUESTIONS

23) Referring to your knowledge of data structures and inheritance, why isit inappropriate for a
java.util.Stack to be a subclass of java.util.Vector? [8 points]

From the list of data structures given, choose the best answer or answers for questions 24 — 31. If
there is no appropriate answer, write “None”. If you feel that more than one answer is
appropriate, list all appropriate answers. It is possible that some answers from the box will not be

used.

Linked List Array

Graph Stack

Tree Queue
Hash Map

24) Structure that associates a key with avalue. [6 points]

25) Structure whose insertion/removal strategy can be defined as LIFO. [6 points]

26) Structure whose insertion/removal strategy can be defined as FIFO. [6 points]

APPENDIX A EXAM QUESTIONS 319

27) Structure that is non-linear. [6 points]

28) Structure whose elements are always stored in a contiguous block of memory. [6 points]

29) You are creating software for acall center that does technical support. Technicians are
supposed to answer callsin the order they are received. What structure would be best for keeping
track of which call should be answered next? [6 points]

30) Your company has decided to create a program to help cell-phone customers everywhere. It
isan on-line program that allows the user to type a person’s name and will return alist of all cell
phone numbers registered to them. Y ou are asked to recommend a structure to hold onto the
information. Which structure would you recommend? [6 points]

31) You are working for abrand new on-line mapping company. This company needs to
maintain information about locations and roads that connect them so that it can tell customers
about various routes between locations. What type of structure would be best for them to useto
store their information? [6 points]

320 APPENDIX A EXAM QUESTIONS

In questions 32—37 you are given an algorithm for sorting or searching. You areto circle any and
al valid big-oh bounds on the worst-case performance of each of the agorithmslisted.

32) Binary Search [6 points]

a O(1) b. O(log n) c. O(n) d. O(nlogn) e. O(n)f. O(2"

33) Linear Search [6 points]

a 0(1) b. O(log n) c. O(n) d. O(nlog n) e. O(n’)f. O(2")
34) Selection Sort [6 points]
a O(1) b. O(log n) c. O(n) d. O(nlogn) e. O(n)f. O(2"

35) Insertion Sort [6 points]

a 0O(1) b. O(log n) c. O(n) d. O(nlogn) e. O(n)f. O(2"
36) Quicksort [6 points]
a 0O(1) b. O(log n) c. O(n) d. O(nlogn) e. O(n)f. O(2"

37) Mergesort [6 points]

a O(1) b. O(log n) c. O(n) d. O(nlogn) e. O(n)f. O(2"

APPENDIX A EXAM QUESTIONS 321

38) Circle any and all of the following algorithms that only function correctly on sorted inputs. If
none of the algorithms require sorted inputs to function correctly, circle choice F. [6 points]

a. Binary Search

b. Linear Search

C. Selection Sort

d. Quicksort

e. Mergesort

f. None of the above.

39) Circle any and all of the following algorithms that use a divide and conquer strategy to
perform their specific task. If none of the listed algorithms use a divide and conquer strategy,
circle choice F. [6 pointg]

a Linear Search

b. Quicksort

c. Mergesort

d. Insertion Sort

e. Selection Sort

f. None of the above.

40) If your hashing function worked every time with no collisions, what would be the running
time of amethod to find an element in a hash table of size n?[1 point]

a O(1)

b. O(log n)

c. O(n)

d. O(n?)

Use the code for anode and linked list given below to answer questions 41 and 42. Please note
that some methods from both classes may have been removed if they do not pertain to the
guestions.

public class Node<E> {
private E data;
private Node<E> next;

publ i c Node<E> (E el enent, Node next Node) {
dat a el enent ;
next next Node;

}

public void set Next (Node next Node) { next = nextNode; }
}

public class LinkedList<E> {

322 APPENDIX A EXAM QUESTIONS

nul | ;
nul | ;

private Node<E> head
private Node<E> tail

public LinkedList() {}

public void insert (E elenent) {
Node<E> newNode = new Node(el enent, null);
tail.set Next (newNode);
tail = newNode;

}

public void insertAtFront(E el enent) {
Node<E> newHead = new Node(el enent, head);
head = newHead;
}
}
41) What isthe big-oh running time of the LinkedList’s method insert in the worst case?[1
point]
a 0O(1)
b. O(log n)
c. O(n)
d. O(n?)

42) What is the big-oh running time of the LinkedList’s method insertAtFront in the worst case?
[1 point]

a 0O(1)

b. O(log n)

c. O(n)

d. o(n)

For questions 43 - 44, decide whether the statement is true or false and circle the appropriate
word true or false. If the statement is false, rewrite the big-oh notation so that it would be truein
the space provided.
43) n® + 2n + 25 = O(n) [3 points]

true fase

Rewritten statement (if false):

APPENDIX A EXAM QUESTIONS 323

44) i + 30n + 4362 = O(n?) [3 points]
true false

Rewritten statement (if false):
45) Arrange the following functionsin order from slowest growing to fastest growing. [7 points]
n,n!, n%logn, 1,2" n"

For questions 46-50, you are given a statement that is either true or false. Circle the letter of the
choice TRUE or FAL SE for each statement given.

46) If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n)). [1 paint]

a TRUE
b. FALSE

47) When we declare a variable whose type is a primitive data type, we are actualy creating a
reference to a space of allocated memory. [1 point]

a TRUE
b. FALSE

48) Primitive types are not objects and therefore do not have methods defined on them. [1 point]

a TRUE
b. FALSE

49) Suppose Triangle, Circle, and Square are all subclasses of Shape. In our program, we create
an array that stores objects of type Triangle. That array can hold any number of Circles, Squares,
and Triangles because they are all subclasses of Shape. [1 point]

a TRUE
b. FALSE

50) We can create an array to hold elements of primitive types (int, char, double, etc), but to hold
elements of object type, we must use another type of data structure. [1 point]

a TRUE
b. FALSE

324 APPENDIX A EXAM QUESTIONS

51) Parts a— d describe four proceduresin code and through words. Circle the letter of each
procedure that can be categorized as recursive. [4 points]

a
public int partA(Object[] itens, Conparable x, int y, int z) {

if (y>2z) {
return -1;
}
el se {
int a=(y+z)/2;
int b = x.conpareTo(itens[a]);
if (b==20) {

return a;

}
elseif (b <0) {
return partA(items, x, y, a — 1);

el se {
return partA(items, x, a + 1, z);
}
}
}
b.
public int partB(int x) {
int r = x;
r =r / 30;
Mat h. power (x, 2);
return x;
}
C.
public int partC (int x) {
int y=0;
for (int i =0; i <x; i++) {
y =y +i
}
return vy;
}
d

Procedure for Witing Down Nanes of People Waiting in line for Mvie Tickets:

3) If line is enpty go back to office.

4) 1If line is not enpty:

a. Walk up to first person in line and ask for their nane.

b. Wite name on official sheet and give participant free popcorn
coupon.

c. Move person to “fast pass” line for tickets.

d. Begin Procedure for Witing Down Names of People Wiiting in line
for Myvie Tickets again.

APPENDIX A EXAM QUESTIONS 325

Use the following code segment to answer questions 52 —56. Some of the questions ask about
the output of a method on a particular input. 1f the method goesinto an infinite loop or infinite
recursion on an input, write “infinite loop” as your answer.

public int nethodl (int x, int y) {

if (y ==0) {
return 1;
}
el se {
return x * methodl(x, y — 1);
}

}

public int nethod2 (int x, int y) {
int result = 1;
for (int i =0; i <vy; i++) {
result = result * x;
}

return resul t;

52) What is the value returned from the following method call: [1 point]

met hod1(2, 1);

53) What is the value returned from the following method call: [1 point]

met hod2(2, 2) ;

54) What is the value returned from the following method call: [1 point]
met hod2(2, -5);

55) What is the value returned from the following method call: [1 point]
met hod1(2, - 3);

326 APPENDIX A EXAM QUESTIONS

56) These methods function differently on different inputs. On which class of inputs do these
methods behave differently (circle al that apply)? [5 points]

a. When both x and y are positive numbers.

b. When both x and y are the number O (zero).
¢. When both x and y are negative numbers.
d. When x is positive and y is negative.

e. When x is negative and y is positive.

f. When x iszero and y is positive.

g- When x iszero and y is negative.

h. When x is positive and y is zero.

i. When x is negative and y is zero.

j- The methods never function differently.

Given the following definition of the Lucas sequence, answer questions 57 — 59.
L(D) =1,
L(2)=3;
L(n=L(n-21)+L(n-2) forn>2

57) State what the base case(s) is/are for the Lucas sequence. [4 points]

58) State what the recursive caseisfor the Lucas sequence. [4 points]

59) Write the Java code for arecursive method that takes as a parameter an integer n and returns
the n element of the Lucas sequence. Y ou can assume that n will always be a number greater
than zero. [8 points]

APPENDIX A EXAM QUESTIONS 327

Given the following list of 19 parts of code, you should identify one example of each of the items
in the code provided for this section (in the answer sheet) by precisely circling and clearly
identifying by number the element in the code segment. Make sure that your circles are clearly
identified with numbers that are clearly written. If the markings are not clear, the question will
simply be marked incorrect and given no credit. If thereis no example of theitemin the code,
you should write the words “ Does not exist” on the line next to the element in the answer sheet.
60) Class name [1 point]

61) Constructor definition [1 point]

62) Assignment statement [1 point]

63) Comment [1 point]

64) Instance variable declaration [1 point]

65) Actua parameter (argument) [1 point]

66) Formal parameter [1 point]

67) Statement that displays information [1 point]

68) Access (Vishility) control modifier [1 point]

69) Accessor method definition [1 point]

70) Mutator method definition [1 point]

71) Creation/instantiation of an object [1 point]

72) Method call/invocation [1 point]

73) Method return type specification [1 point]

74) Superclass name [1 point]

75) Subclass name [1 point]

76) Interface name [1 point]

77) Name of aclassthat implements an interface [1 point]

78) Method overloading (identify one of the methods that is overloaded) [1 point]

328 APPENDIX A EXAM QUESTIONS

Usetheclass Si npl ePar ans and Si npl ePar ans App defined below to answer questions
79-82
public class SinpleParans () {

private doubl e _data;

public SinpleParans() {
_data = 5.75;
}

public String nethodl(String s) {
return s + “ additional stuff”;
}

public void nmethod2(int input) {
int tenp = input + 1
System out. println(“l nput was: “ + input
+ “and tenp is: “ + tenp);

}

public void nethod3(double input) {
_data = input;

}

publ i c doubl e getData() {
return _data;

}

}/ 1 Si npl ePar ans

public class Sinpl eParansApp {
public Sinpl eParansApp() {

Si mpl ePar ans sp
doubl e answer 79

new Si npl ePar ans() ;
sp. getData();

sp. met hod1(“Sinple stuff.”);

String answer 80
sp. method2(6); //Needed for question 81

sp. met hod3(3. 8);
doubl e answer82 = sp.getData();

}

public static void main(String[] args) {
Si mpl ePar ansApp spa = new Si npl ePar ansApp() ;

}
}/ 1 Si npl ePar ans App

APPENDIX A EXAM QUESTIONS 329

79) When the codefor Si npl ePar ans App is executed, what value will answer79 be assigned?
[1 point]

80) When the codefor Si npl ePar ans App is executed, what value will answer80 be assigned?
[1 point]

81) When the codefor Si npl ePar ans App is executed, and net hod2 is called with the value
6, asindicated in the code with a comment, what text will be outputted? [1 point]

82) When the codefor Si npl ePar ans App is executed, what value will answer82
be assigned?[1 paint]

330 APPENDIX A EXAM QUESTIONS

Use the following variables and their values to evaluate the expressions given in questions 83 -
91. Suppose each expression is executed independently (ie — no later expression depends on a
result of a previous expression).

int a = 4; double d = 4.5;

int b = 6; double e = 3.3;

int ¢ =-3; double f = 0.5;
bool ean g = true;

bool ean h = fal se;

bool ean i = true;

83) (a +b) * (c —c) [1point]

84) (d/ f) + (a %b) [1point]

85) b < ¢ [1point]

86) d!'=f [1point]

87) (g & h) || ('i && h) [1point]

APPENDIX A EXAM QUESTIONS 331
Now suppose the following lines of code have been executed. The variablesa and ¢ refer back
to the previous page.

int X
int y

a;
C++;

88) What isthe value of x?[1 point]

89) What isthe value of y?[1 point]

90) What is the value of c?[1 point]

91) Thefollowing line of code does not compile (e & b refer back to the previous page). What
do you need to do to get the line of code to work? [4 points]

int z =e * b;

(Circle all answers from the choices below that would make the code compile.)
i. Youneedto cast b to be adouble.

Y ou need to cast b to be an integer.

Y ou need to cast e to be an integer.

Y ou need to cast e to be adouble.

Youneedto cast theresult of e * b tobeaninteger.

You need to cast theresultof e * b tobeadouble.

Y ou need to make z a double.

Y ou need to make z an object.

ToOoS3 - x T

332 APPENDIX A EXAM QUESTIONS

Use the code for the method expl given below to answer questions 92 - 93.
public double expl (int x1, int x2, int y1, int y2) {
int tenpX = (x2 — x1) * (x2 — x1);
int tempY = (y2 — yl) * (y2 - yl);

return Math.sqgrt(tenpX + tenpY);

Suppose that the expl method is called in the following way:

expl(12, 16, 24, 27);

92) What is the value that will be computed for t enpX while the method is running? [1 point]

93) What valueis returned from the method call? [1 point]

Use the code for the class Condi t i onal given below to answer questions 94 —96. For
guestions 94 — 96, you are presented with a method call. In the space provided, you should give
the value that is returned from the method call.

public class Conditional {

public String cond2 (double input) {
if (input <= 5.0 & input >= 0.0) {
return “First Branch”;
}

else if (input > 5.0 || input <= -2.0) {
return “Second Branch”;

}

el se {
return “Third Branch”;

}

}
}

94) cond2(3.5); [1point]
95) cond2(7. 345) ; [1point]
96) cond2(-1.9); [1point]

APPENDIX A EXAM QUESTIONS 333

Use the code for the class Looper given below to answer questions 97 — 100. For questions 97
— 100, you are presented with a method call. In the space provided, you should give the value
that is returned from the method call.

public class Looper {

public int loopl(int input) {

for (int i =1; i <= 20; i++) {
i nput ++;
} |
return input;
}

public int |oop2() {

for (int counter = 10; counter > 0; counter = counter
-2) {
Systemout. println(“counter = “ + counter);

}
return O;

}

public int loop3(int input) {
while (input < 10) {
i nput = input * 2;
}
return input;

}

97) 1 oop1(20); [1point]
98) | oop2(); [1point]
99) | oop3(3); [1point]

100) | oop3(32); [1 point]

334 APPENDIX A EXAM QUESTIONS

For questions 101 — 103, you will befilling in the methods for the class St r i ngFun as
described in each question. The empty skeleton for this classis given below for reference. You
will fill inthe areas with the ellipses (...). Please also note the abbreviated API given for both the
java. i o. Buf f er edReader classaswell asthe St ri ng class as these could be of help to
you while answering these questions.

i mport java.io.*;

public class StringFun {
private java.util.ArrayList<String> _strings;

public StringFun() {
_strings = new java.util.ArrayList<String>();

}
//Loads the strings fromthe file specified into the
Arrayli st
public void |loadFile(String filenane) {]
}

/1l ndi cates the nunber of Strings in the ArraylList that are
the right size
public int rightSize() {

}

/] Counts the total nunber of letter Ps in all the strings
in the ArraylLi st
public int countPs() {

}

APPENDIX A EXAM QUESTIONS

Abbreviated API for java.io.BufferedReader (from Sun’s Java APl docs)

335

Constructor Summary

Buf f er edReader (Reader in)

Create a buffering character-input stream that uses a default-sized input buffer.

Method Summary

voi d|cl ose()
Close the stream.
int read()
Read asingle character.
int [read(char[] cbuf, int off, int len)
Read charactersinto a portion of an array.
String|readLi ne()

Read aline of text.

Abbreviated API for java.lang.String (from Sun’s Java API docs)

Method Summary

char (char At (i nt i ndex)

Returnsthe char value at the specified index.

i nt [conpareTo(String anotherString)
Compares two strings lexicographically.

i nt |conpar eTol gnoreCase(String str)
Compares two strings lexicographically, ignoring case differences.

bool ean lendsWth(String suffix)

Testsif this string ends with the specified suffix.

bool ean equal s(Obj ect anObj ect)

Compares this string to the specified object.

bool ean equal sl gnoreCase(Stri ng anot her Stri ng)

Comparesthis St r i ng to another St ri ng, ignoring case
considerations.

int {l.ength()
Returns the length of this string.

336 APPENDIX A EXAM QUESTIONS

String|repl ace(char ol dChar, char newChar)
Returns a new string resulting from replacing all occurrences of
ol dChar inthisstring with newChar .

bool ean startsWth(String prefix)
Testsif this string starts with the specified prefix.

String|substring(int beginlndex)
Returns a new string that is a substring of this string.

String substring(int beginlndex, int endlndex)
Returns a new string that is a substring of this string.

String|toLower Case()
Converts al of the charactersin this St r i ng to lower case using the
rules of the default locale.

String |t oUpper Case()
Converts dl of the charactersin this St r i ng to upper case using the
rules of the default locale.

String|toUpper Case(Local e | ocal e)
Converts dl of the charactersin this St r i ng to upper case using the
rules of thegiven Local e.

String|trin()
Returns a copy of the string, with leading and trailing whitespace omitted.

101) In your answer booklet, you will finish writing the code for the method | oadFi | e. Note
that some of the code is adready written for you. Thefileisalready loaded into the

Buf f er edReader . Your task isto read each line of the file and input each oneinto the
Arrayli st . Please notethat we are also assuming that some other object will handle the
exceptions that might be thrown. [8 points]

public void loadFile(String fil enane) throws
Fi | eNot FoundExcepti on,
| CException {

Buf f er edReader in = new BufferedReader (new
Fi | eReader (fil enane));
/'l Your code begi ns here.
/I/'Wite your code in the answer bookl et.

APPENDIX A EXAM QUESTIONS 337

102) Write the code for the method r i ght Si ze so that it returns the number of stringsin
_strings whose length is between 3 and 10 charactersinclusive. [8 points]

public int rightSize() {
/I'Wite the code for this nethod in your answer
bookl et

}

103) Write the code for the method count Ps so that it returns the total number of occurences of
the letter Pin all of the stringsin _stri ngs. Your method should count both lower case (p) and
upper case (P) letters. [8 points]

public int countPs() {
//Wite the code for this nethod in your answer
bookl et

338 APPENDIX A EXAM QUESTIONS

Use the following code segment for the classes named Types, Thi ng, and Dri ver , the
interface named Col or abl e, and your knowledge of Javato answer the questions 104 — 113. If
the question has multiple choices, you should circle the | etter of the best answer for each
guestion, unless instructed otherwise.

public interface Col orable {
public void setColor (java.aw.Color color);
public java.aw . Col or get Col or();

}// Col orabl e

public class Thing inplenments Col orabl ef
private java.awt.Color _col or;

public Thing() {
_color = java.awt . Col or. WH TE;
}

public void setColor (java.aw.Color color) {
_color = color;
}

public java.aw . Col or getCol or() {
return _color;

}
}// Thing

public class Types {
private Thing _thing;
private int _nunber;

public Types() {
_thing = new Thing();
_nunber = 0;

}

public void increnment Nunber (int increnent) {
_nunber += increnent;
}

}/ I Types

APPENDIX A EXAM QUESTIONS

public class Driver {
public Driver() {
int i =5;
Colorable t = new Thing();
/lLine for question 109 inserted here
thi s. changeParans(i, t);

}

public void changeParans (int input, Colorable thing) {
i nput = input * 2;
t hi ng. set Col or (j ava. awt . Col or. RED) ;

}

public static void main (String[] args) {
Driver d = new Driver();

}
} /Driver

104) What isthe value of _t hi ng before the constructor isrun for the class Ty pes?[1 point]
a A null reference.
b. A random value assigned value assigned by the compiler.
c. An object of type Thi hg whose instance variables are set to null.
d. _t hi ng does not exist before the constructor is run.

105) What isthevalue of _nunber after the constructor isrun for the class Types?[1 point]
a null
b.0
c.-1
d. undefined

106) Which of the variables presented in this code segment are object references? Circlethe
letters of al that apply. [5 points]

a._color

b. thing

C. _nunber

d. i ncrement

e i

f.t

g.i nput

h.t hi ng

i.d

j- None of these variables are references.

k. All of these variables are references.

339

340 APPENDIX A EXAM QUESTIONS

107) Which of the members (variables or methods) from the class Ty pes are accessible from
outside the class? Circle theletters of al that apply. [6 points]

a _thing

b. nunber

c. Types() constructor

d.i ncrement Nunber (i nt i ncrenent) method

e. None of the members are accessible outside of the class.

f. All of the members are accessible outside of the class.

108) Which of the membersfrom the classDr i ver arenot local and only accessible from inside
the class? Circlethe letters of all that apply. [6 points]
ai

b.t

c.Driver () constructor

d.changePar ans(i nt i nput, Col orabl e thing) method

e.main(String[] args) method

f. None of the members are only accessible from inside the class.

109) Suppose we add the following line to the constructor in the space indicated by the comments
inDriver:[1point]
t =1i;
Isthisvalid? What would happen?
a. Itisperfectly valid. The code would run.
b. Itisvalid. Thetypeofiisaprimitiveandt isan object type and you can aways assign a
primitive type to any object type because primitives are subclasses of objects.
c. Thisisnot valid. The codewould compile, but would cause a run-time error.
d. Thisisnot valid. The codewould not compile becauset and i are not of compatible types.

110) Under what circumstances would you be allowed to add the following line of code to the
end of theclassDr i ver ’sconstructor: [1 point]
t = new O herThing();

No special circumstances, thisline of code would always work.

Only when O her Thi ng isasubclass of Thi ng.

Only when Ot her Thi ng isasuperclass of Thi ng.

Thisline of code would never work because the declared type of t isThi ng, soyou
must assign a Thi ng objectto t .

S@ ™o

111) Looking at the code for Dri ver , what isthevalue of i after the method changePar ans
has been called?[1 point]

e. Thevaueisunchanged, 5.

f. Thevaueis2timesthevalue, 10.

g. ThevaueisO because i was never initialized.

h. Thevalue will be null because you can not change the value of i from within a method.

APPENDIX A EXAM QUESTIONS 341

112) Again looking at the codefor Dr i ver , after the method changePar ans has been called
in the constructor, suppose we add the following line of code:
java.awt. Col or color = t.getColor();

What would be the value of color?[1 point]
e. javaawt.Color WHITE
f. javaawt.Color.RED
g. java.awt.Color.PINK
h. null

For questions 113 - 115, use the following code to help you answer the questions.
public class Ball {
private java.aw . Col or _color;

public Ball() {
_color = java.awt. Col or. GREEN,
}

public java.awt. Col or getColor() {
return _color;
}

public void setColor (java.awt.Color color) { _color = color; }

}

public class Driver {

public Driver() {
Ball ball = new Ball ();
bal | . set Col or (j ava. awt . Col or. RED) ;

Ball ball2 = new Ball ();
ball2 = ball; /1l Question 113 refers up to this
poi nt

bal | . set Col or (j ava. awt . Col or. BLUE) ; /1l Question 114
code

java.aw . Col or questionll1l4 = ball 2. getCol or();
/1 Questionll4 code

ball2 = new Bal |l (); /1 Question
115 code

bal | 2. set Col or (j ava. awmt . Col or . BLACK) ; /] Question
115 code

java. awm . Col or questionll5 = ball.getColor();
/1 Questionll5 code

}

342 APPENDIX A EXAM QUESTIONS

public static void main(String[] args) {
Driver d = new Driver();
}

}

113) After theline of codein Dr i ver that reads
ball2 = ball;
is executed, which reference refers to agreen ball? [1 point]

e. ball

f. ball2

g. bothbal | andbal | 2
h. neither bal | orbal | 2

114) Focus your attention on the lines of code that is the code for Question 114 as indicated by
comments. What will the value of the variable questi on114 be?[1 point]

e. java.awt . Col or. RED

f. java. awmt . Col or. GREEN

g. java.awt. Col or. BLUE

h. no color —it will be an error

115) Focus your attention on the lines of code that isthe code for Question 115 as indicated by
comments. What will the value of the variable quest i on115 be?[1 point]

e. java.awt. Col or. RED

f. java. awt. Col or. GREEN

g. java.aw . Col or. BLUE

h. java.aw . Col or. BLACK

APPENDIX A EXAM QUESTIONS

343

Use the UML diagram given below as well as the code segment given after the diagram to answer

guestions 116 — 127.

App

Slliy]
nid setiD(D id)

static void mainString[] args)

== interdace ==

Colorable

java.awt.Color getColord
oid setColorfjava.awt. Color color)

I

D

.l

ID{ARp app, Puppy puppy)

Animal

A nirnal)

I nimaliToy)

[Toy getTov)

oid somethingShouldHappend

i

Puppy

double weight

Puppy (double)

oid somethingShouldHappen(

oid doBomethinaWWithThisColorfjava.awt. Color calorn)

java.awt.Color

Toy

oid doSomething

oid doMothing

— Zrproid setColorfava.awt Color color)
java.awt. Color getColord

344 APPENDIX A EXAM QUESTIONS

/* The classes given below were witten for the purposes of this exam
In

* reality, they would each be in their own separate file, but are
reprinted

* here as one long file for ease of reading. This “print-out” spans
t wo

* pages, so please |ook at both pages while answering the follow ng
* guesti ons.

*/

public class App {

private Puppy _puppy;
private ID _id;

public App (){
Systemout.println("App constructor called.");
_puppy = new Puppy(new Toy());
this.setlD(new I D(this, _puppy));
Systemout. println("App constructor end.");

}

public void setID(IDid) {
_id =1id;
}

public static void main (String[] args) {
App app = new App();
} /1 end of main ()
Y1 App

public interface Col orable {

j ava. awt . Col or getCol or();

voi d set Col or (j ava. awt . Col or col or);
}// Col orable

public class ID inplenents Col orabl e{

private Animal _animal;
private java.awt . Col or _col or;

public ID (App app, Animal animal){
_animal = ani nal ;
_color = java.awt. Col or. BLACK;

}

public java.awt. Col or getColor() {
return _color;
}

public void setColor(java.awm. Color color) {
_color = color;

APPENDIX A EXAM QUESTIONS

}
Y/ 1D

public class Animal ({
private Toy _toy;

public Animal (){ _toy = new Toy(); }
public Animal (Toy toy) { _toy = toy; }
protected Toy getToy() { return _toy; }

public void sonethi ngShoul dHappen() { _toy.doSonething(); }
}/ /1 Animal

public class Puppy extends Aninal{
public Puppy() {}

public Puppy (Toy toy){

super (toy);

thi s. doSoret hi ngW t hThi sCol or (t hi s. get Toy() . get Col or());
}

public void doSonet hi ngWthThi sCol or (j ava. awt. Col or color) {
this.getToy().set Col or(col or.darker());
}

public void sonethi ngShoul dHappen() {
super . sonet hi ngShoul dHappen() ;
thi s. get Toy(). doNot hi ng();
}
}/ ! Puppy

public class Toy {
private java.awt . Col or _col or;
private String[] _sounds;

public Toy (){ _color = java.aw. Col or. RRED; }
public void setCol or(java.aw . Col or color) { _color = color;
public java.awt.Color getColor() { return _color; }

public void doSonething() {
_sounds = new String[20];
for (int count = 0; count < _sounds.|ength; count++) {
_sounds[count] = "Squeak";
} /1 end of for ()
System out . println(_sounds);
}
public void doNothing() {
/1 This method really does not hing.

}
}/1 Toy

}

345

346 APPENDIX A EXAM QUESTIONS

For questions 116 — 125, assume the following variable declarations. Note that any ellipses(...)
indicates material that will not affect your answer to the question and can be safely ignored. For
each of the method callsin questions 116 - 125, you should circle the name of the class/interface
that defines the method that will be executed for the method call. If the call islllegal, circlethe
choice that correspondsto “Illegal”.

Colorablec = new ID(...);
Animal animal = new Puppy();

Puppy puppy = new Puppy();

116) c. get Col or () ; [1 point]

App
Anima

Puppy
Colorable
ID

. Toy
Illegal

S3TRTTS

117) c. set Col or (..); [1point]

h. App

i. Animal

j. Puppy

k. Colorable
l. 1D

m. Toy

n. lllegal

118) c. set 1 D{); [1 point]

h. App

i. Animal

j. Puppy

k. Colorable
l. 1D

m. Toy

n. lllegal

119) ani nal . get Toy(); [1point]

h. App

i. Animal

j. Puppy

k. Colorable

APPENDIX A EXAM QUESTIONS 347

l. 1D
m. Toy
n. lllegal

120) ani mal . sonet hi ngShoul dHappen(); [1 point]

App
Anima

Puppy
Colorable
ID

. Toy
Illegal

S3TRTTS

121) ani mal . doSonet hi ngW t hThi sCol or (..); [1 point]

App
Animal

Puppy
Colorable
ID

. Toy

Illegal

S3 TR TS

122) puppy. sonet hi ngShoul dHappen() ; [1 point]

App
Animal

Puppy
Colorable
ID

. Toy

Illegal

S3T TS

123) puppy. doSonet hi ngWt hThi sCol or (..); [1 point]

App
Animal

Puppy
Colorable
ID

. Toy

Illegal

S3TF TS

348 APPENDIX A EXAM QUESTIONS

124) puppy. get Toy(); [1 point]

App
Anima

Puppy
Colorable
ID

. Toy
Illegal

S3TRTTS

125) puppy. get Col or () ; [1 point]

App
Animal
Puppy
Colorable
ID

. Toy

Illegal

S3TRTTS

Recall that questions 126 — 127 till refer to the UML diagram and code used for questions 116-
125.

126) Circle the names of all methods that are simply inherited (not overridden) by some other
class. If no methods areinherited, circle the choice that correspondsto “None”. [6 points]

. void main (String[] args) //in class App

void setColor(java.awt.Color color) //in class ID
Animal () //in class Animal

Animal (Toy toy) //in class Animal

Toy getToy() //in class Animal

void somethingShoul dHappen() //in class Animal
Puppy () //in class Puppy

Puppy (Toy toy) //in class Puppy

void somethingShoul dHappen() //in class Puppy
void doSomethingWithThisColor(java.awt.Color color) //in class Puppy
void setColor(java.awt.Color color) //in class Toy
None

XS<E~TVw-QapVOS53

127) Isthe method sonet hi ngShoul dHappen in the class Puppy partially overridden or
totally overridden?[1 point]

c. Partialy overridden

d. Totaly overridden

Appendix B

Grading Guidelinefor Exam

The table below gives the categorization of each of the questions on the exam as well

asthe point value for each question. The categories are:

0 MC1A: Multiple choice question where students are asked to provide one

answer

o MCMA: Multiple choice question where students are asked to provide all

possible answers from alist of choices

0 FRI1A: Freeresponse question (no choices given) wherethereis aclearly

correct and usually short answer

o0 FRCA: Freeresponse question (no choices given) where the answer may be
dlightly more complex than a short answer, or the grading might allow for

partial credit

0 SG: Question that has been designated as subjective. The content of the
answer is sufficiently complex that there is much room for variance among

answers. It isrecommended that whenever possible, these questions be

349

350 APPENDIX B GRADING GUIDELINE FOR EXAM

graded by more than one rater and the raters' ratings are compared for
consistency. If itisnot possible, it would be best if one rater graded one
guestion for the entire group of exams. If neither of the above are possible
and the grading must be split amongst multiple graders, it is recommended
that the graders grade the same questions at the same time and engage in
discourse about how they have interpreted the guideline so asto ensure
consistency of scoring. Thisis probably best achieved if the grading takes

place in the same location.

Question Question Number of Total Points Individual
Number Category Choices Possible for Choice
Question Weights®
1 FRCA N/A® 8 N/A
2 FRCA N/A 3 N/A
3 FRCA N/A 8 N/A
4 MC1A 9 1 N/A
5 SG N/A 8 N/A
6 FR1A N/A 1 N/A
7 FR1A N/A 1 N/A
8 FR1A N/A 1 N/A
9 SG N/A 8 N/A
10 SG N/A 8 N/A
11 SG N/A 8 N/A
12 SG N/A 8 N/A
13 FR1A N/A 1 N/A
14 FR1A N/A 1 N/A
15 FR1A N/A 1 N/A
16 FR1A N/A 1 N/A
17 FR1A N/A 1 N/A
18 FRCA N/A 3 N/A
19 FRCA N/A 8 N/A

% See Grading Non-Multiple Choice Questions section for more information about partial credit for
multiple choice questions where students may need to circle more than one answer.
3" N/A means the column category is not applicable to that particular question.

APPENDIX B GRADING GUIDELINE FOR EXAM 351
20 MCMA 9 4.5 0.5
21 MCMA 4 4 1
22 MC1A 3 1 N/A
23 SG N/A 8 N/A
24 FRCA N/A 6 N/A

Question Question Number of Tota Points Individual
Number Category Choices Possible for Choice
Question Weights

25 FRCA N/A 6 N/A
26 FRCA N/A 6 N/A
27 FRCA N/A 6 N/A
28 FRCA N/A 6 N/A
29 FRCA N/A 6 N/A
30 FRCA N/A 6 N/A
31 FRCA N/A 6 N/A
32 MCMA 6 6 1

33 MCMA 6 6 1

34 MCMA 6 6 1

35 MCMA 6 6 1

36 MCMA 6 6 1

37 MCMA 6 6 1

38 MCMA 6 6 1

39 MCMA 6 6 1

40 MC1A 4 1 N/A
41 MCI1A 4 1 N/A
42 MCI1A 4 1 N/A
43 SG N/A 3 N/A
44 SG N/A 3 N/A
45 FRCA N/A 7 N/A
46 MCI1A 2 1 N/A
47 MC1A 2 1 N/A
438 MC1A 2 1 N/A
49 MCI1A 2 1 N/A
50 MC1A 2 1 N/A
51 MCMA 4 4 1

52 FR1A N/A 1 N/A
53 FR1A N/A 1 N/A
4 FR1A N/A 1 N/A
55 FR1A N/A 1 N/A
56 MCMA 10 5 0.5
57 SG N/A 4 N/A

352 APPENDIX B GRADING GUIDELINE FOR EXAM

58 SG N/A 4 N/A
59 SG N/A 8 N/A
60 FRCA N/A 1 N/A
61 FRCA N/A 1 N/A
62 FRCA N/A 1 N/A
Question Number Question Number of Total Points Individual
Category Choices Possible for Choice
Question Weights
63 FRCA N/A 1 N/A
64 FRCA N/A 1 N/A
65 FRCA N/A 1 N/A
66 FRCA N/A 1 N/A
67 FRCA N/A 1 N/A
68 FRCA N/A 1 N/A
69 FRCA N/A 1 N/A
70 FRCA N/A 1 N/A
71 FRCA N/A 1 N/A
72 FRCA N/A 1 N/A
73 FRCA N/A 1 N/A
74 FRCA N/A 1 N/A
75 FRCA N/A 1 N/A
76 FRCA N/A 1 N/A
77 FRCA N/A 1 N/A
78 FRCA N/A 1 N/A
79 FR1A N/A 1 N/A
80 FR1A N/A 1 N/A
81 FR1A N/A 1 N/A
82 FR1A N/A 1 N/A
83 FR1A N/A 1 N/A
84 FR1A N/A 1 N/A
85 FR1A N/A 1 N/A
86 FR1A N/A 1 N/A
87 FR1A N/A 1 N/A
88 FR1A N/A 1 N/A
89 FR1A N/A 1 N/A
90 FR1A N/A 1 N/A
91 MCMA 8 4 0.5
92 FR1A N/A 1 N/A
93 FR1A N/A 1 N/A
94 FR1A N/A 1 N/A
95 FR1A N/A 1 N/A

APPENDIX B GRADING GUIDELINE FOR EXAM 353
96 FR1A N/A 1 N/A
97 FR1A N/A 1 N/A
98 FR1A N/A 1 N/A
99 FR1A N/A 1 N/A

100 FR1A N/A 1 N/A

Question Number Question Number of Total Points Individual

Category Choices Possible for Choice
Question Weights

101 SG N/A 8 N/A
102 SG N/A 8 N/A
103 SG N/A 8 N/A
104 MC1A 4 1 N/A
105 MC1A 4 1 N/A
106 MCMA 11 5.5 0.5
107 MCMA 6 6 1

108 MCMA 6 6 1

109 MC1A 4 1 N/A
110 MC1A 4 1 N/A
111 MC1A 4 1 N/A
112 MC1A 4 1 N/A
113 MC1A 4 1 N/A
114 MC1A 4 1 N/A
115 MC1A 4 1 N/A
116 MC1A 7 1 N/A
117 MC1A 7 1 N/A
118 MC1A 7 1 N/A
119 MC1A 7 1 N/A
120 MC1A 7 1 N/A
121 MC1A 7 1 N/A
122 MC1A 7 1 N/A
123 MC1A 7 1 N/A
124 MC1A 7 1 N/A
125 MC1A 7 1 N/A
126 MCMA 12 6 0.5
127 MC1A 7 1 N/A

354 APPENDIX B GRADING GUIDELINE FOR EXAM

The table beginning on page 9 gives the answers to the questions that are multiple
choice (both MC1A and MCMA) as well as those that are free response, but have one

clearly recognizable answer (FR1A).

For multiple choice questions with only one answer (MC1A) or free response one
answer (FR1A) questions, the answer is either correct or incorrect, no partial creditis
awarded. Each of these questionsisworth 1 point and either the student earns the point

for the correct answer, or does not earn credit if the answer isincorrect.

For any question that is free response, a student may give extraneous information that
is not asked for by the question. If the extraneous information is correct, neither award,
nor deduct points. If the information is not correct, a deduction of one point should be
made for the question no matter how many pieces of extraneous information were given.
If incorrect extraneous information is given on the next question as well, another one
point deduction is appropriate. Essentially, each question should be treated individually
inthiscase. If the student gives incorrect extraneous information for every question on

the exam, they will be deducted one point for every question on the exam.

For multiple choice questions with more than one answer (MCMA), grading is based
on the correct state of each of the choices for the question. That means, if an answer is
supposed to be circled and it is, the student earns the appropriate credit, either 1 point or
Y, point (refer to first table for correct point value). If an answer is not supposed to be
circled and it is not, the student earns the appropriate credit. If the answer should be

circled and it is not the student does not earn credit. Likewise, if the answer was not

APPENDIX B GRADING GUIDELINE FOR EXAM 355

circled and should have been circled the student does not earn credit. Let’slook at afew
examples of this. Thefirst example is a question where each answer choice is worth one

point. The second example is a question where each answer choice is worth %2 point.

Question X (Total points: 4; each choice 1):
Answer Choicess A B C D
Correct Answers. B D

Student Answers. B D

Earns: 4 points

Reason: A & C are correctly not answers and B & D are answers, all choicesin correct
state.

Student Answers. A B D

Earns: 3 points

Reason: Choices B, C, and D arein the correct state. Choice A is not, so the student
loses 1 point.

Student Answers. B

Earns: 3 points

Reason: Choices A, B, and C are in the correct state. Choice D is not, so the student
loses 1 point.

Student Answers. B C

Earns: 2 points

Reason: Choices A and B are in the correct state. Choices C and D are not, so the
student loses 2 points.

Student Answers: A C
Earns: 0 points
Reason: None of the choices arein the correct state.

356 APPENDIX B GRADING GUIDELINE FOR EXAM

Question Y (Total points: 4, each choice ¥2):
Answer Choicess A B C D E F G H
Correct Answers. B C F G H

Student Answers;. B C F G H
Earns: 4 points
Reason: All Choices arein the correct state, answers are circled, non-answered are not.

Student AnswerssB C F H
Earns: 3.5 points
Reason: Choice G is missing from the answers, but all other choicesin correct state.

Student Answers;. A B F G H
Earns: 3 points
Reason: ChoicesB, D, E, F, G, and H are in the correct state Choices A and C are not.

Student Answerss. B D E F G H
Earns: 2.5 points
Reason: Choices A, B, F, G, and H arein the correct state. ChoicesC, D, and E are not.

Student Answerss A B C E F
Earns: 2 points
Reason: Choices B, D, E, and F arein the correct state. ChoicesA, C, G, and H are not.

Student Answer's;. A B C D E
Earns: 1 point
Reason: ChoicesB and C arenot. Choices A, D, E, F, G, and H are not.

APPENDIX B GRADING GUIDELINE FOR EXAM 357

Question | Question | Correct Answers
Number | Category
4 MC1A | D
6 FR1A | 50
7 FR1A 0
8 FR1A 49
13 FR1IA | ¢
14 FR1IA | Db, f, g,k g,n,r,s orv (only oneanswer needed, but any of these
answers is correct)
15 FR1A | Oor 1 (depending on what students were taught)
16 FR1A | 3(if answer to 15was0) or 4 (if answer to 15 was 1)
17 FRIA |p
20 MCMA (B C E
21 MCMA |A C
22 MC1A | C
32 MCMA |B C D E F
33 MCMA |(C D E F
34 MCMA |E F
35 MCMA |E F
36 MCMA |E F
37 MCMA |D E F
38 MCMA | A
39 MCMA |B C
40 MC1A | A
41 MC1A | A
42 MC1A | A
46 MC1A | A
47 MC1A |B
48 MC1A | A
49 MC1A |B
50 MC1A | B
51 MCMA (A D
52 FR1IA |2
53 FR1A 4
54 FRIA |1
55 FR1A | Infiniteloop
56 MCMA |C D G
79 FR1A 5.75
80 FR1A | Simple stuff. additional stuff
81 FR1A | Inputwas6 andtampis. 7
82 FR1IA |38

358 APPENDIX B GRADING GUIDELINE FOR EXAM

83 FR1A 0
84 FR1A 13
85 FR1A |fase®
86 FR1A true
87 FR1A false
88 FR1A 4
89 FR1A -3
a0 FR1A 2
91 MCMA |C E G
92 FR1A 16
93 FR1A 5
94 FR1A “First branch”
95 FR1A “Second branch”
96 FR1A “Third branch”
97 FR1A 40
98 FR1A 0
99 FR1A 12
100 FR1A 32
104 MC1A | A
105 MC1A | B
106 MCMA |A B F H |
107 MCMA |C D
108 MCMA | F
109 MC1A | D
110 MC1A B
111 MC1A | A
112 MC1A B
113 MC1A | D
114 MC1A C
115 MC1A C
116 MC1A | E
117 MC1A E
118 MC1A |G
119 MC1A B
120 MC1A |C
121 MC1A |G
122 MC1A |C
123 MC1A |C

% For questions 85, 86, and 87, students are asked to evaluate an expression in Java that uses booleans. No
credit should be given if the words true and/or false are not given. Theletters T or F, the valuesO or 1, or
the words TRUE or FAL SE are not the boolean constants in Java and should receive no credit.

APPENDIX B GRADING GUIDELINE FOR EXAM

359

124 MC1A | B
125 MC1A |G
126 MCMA | E
127 MC1A | A

Grading Non-M ultiple Choice Questions

Free response complex answer questions have slightly more complex answers or

slightly more complex grading rules than the free response one answer questions. For

each of the questions that fall into this category, the answers to the questions are given as

well as any necessary explanation of the point breakdown.

Recall the discussion in the previous section about incorrect extraneous information.

The same rules apply for these questions.

360

APPENDIX B GRADING GUIDELINE FOR EXAM

Question
Number
(FRCA)

Tota Points
Possible for
Question

Answer

Notes about Grading

1

8

Eight points awarded if treeis
correct. If one or two nodes
are misplaced in the tree,
student earns 4 points. If
more than two nodes are
misplaced, student earns 0
points.

34, 26, 30

There are three “ places’ for
answers for this question.
Each place should be treated
as aseparate answer. The
first place should contain the
number 34. If it does, award
one point. The second place
should contain the number
26. If it does, award one
point. Thethird place should
contain the number 30. If it
does, award one point.

Will vary depending on what deletion
strategy was taught at a particular
institution.

To earn eight points (full
credit), thetree given as an
answer must be avalid binary
search tree (BST) containing
all of the nodes of the original
except 34. If the student
produces avalid BST that is
missing one node in addition
to 34, award only 4 points. If
the student produces a BST
that has greater than one node
missing in addition to 34 (ie—
an entire branch of the
original tree has been deleted
with the root), award zero
points. If thetree given was
not avalid BST, award zero
points.

18

kandgandr

One point for each correct
answer given. All three
answers heed to be given for
full credit. Additional
answers that are not correct
do not earn any credit, but

APPENDIX B GRADING GUIDELINE FOR EXAM

361

they do not lose any credit
either.

19

If all nodes present and all
arcs correct connecting nodes,
award eight points. If the
student has arcs B to D
(perhapstwice), D to A, and
Fto C, they havejust tried to
copy the adjacency list into a
graph and do not understand
how to translate between the
two and should be awarded
Zero points.

24

Hash Map

No other answers correct for
this question. If other
answers listed along with this
answer, award only 3 points
of the 6 possible.

25

Stack

No other answers correct for
this question. If other
answers listed along with this
answer, award only 3 points
of the 6 possible.

26

Queue

No other answers correct for
this question. If other
answers listed along with this
answer, award only 3 points
of the 6 possible.

27

Graph & Tree

The answers graph and tree
arerequired and earn 3 points
each for atotal of 6 points. If
the student wrote Hash Map,
the student should not earn
additional credit, or lose any
points. If other answers are
listed beside the three
mentioned, subtract 3 points
from the total earned, but the
point value should not go
below zero.

28

Array

No other answers correct for
this question. If other
answers listed along with this
answer, award only 3 points
of the 6 possible.

29

Queue

No other answers correct for

362

APPENDIX B GRADING GUIDELINE FOR EXAM

this question. If other
answers listed along with this
answer, award only 3 points
of the 6 possible.

30

Hash Map

No other answers correct for
this question. If other
answers listed along with this
answer, award only 3 points
of the 6 possible.

31

Graph

No other answers correct for
this question. If other
answers listed along with this
answer, award only 3 points
of the 6 possible.

45

n

1,logn, n, n? 2" n!, n

There are seven “places’ for
answers for this question.
Each place should be treated
as a separate answer. The
first place should contain 1.
If it does, award one point.
The second place should
containlog n. If it does,
award one point. Thethird
place should contain n. If it
does, award one point. The
fourth place should contain
n®, and so on.

60

Any one of: App, ID, Animal, Puppy,

Toy

One point if code segment
identified correctly, zero
pointsif not identified
correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie —the numbers or
markings areillegible).

61

Student should circle the entirety of the
constructor definition from the word
public to the}. There are constructors
for App, ID, Animal (2 constructors

present), Puppy, and Toy.

One point if code segment
identified correctly, zero
pointsif not identified
correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie — the numbers or

APPENDIX B GRADING GUIDELINE FOR EXAM

363

markings areillegible).

62 Students should circle any statement | One point if code segment
that performs assignment (using =). identified correctly, zero
The entire statement including the ; pointsif not identified
should be circled. Examples are: correctly. Zero pointsif more
_puppy =new Puppy(new than one segment identified
Toy()); for each question. Zero
_animal = animal; pointsif it isnot clear what is
_color being identified for which
=j ava. awt . Col or . BLACK; question (ie —the numbers or
_color = color,; markings areillegible).
_toy = toy;
_color =
j ava. awt . Col or . RED;
int count = O;
63 Students can identify either amulti-line | One point if code segment
comment (indicated by the /* and identified correctly, zero
ended with */) or an in-line comment | pointsif not identified
(indicated by //). The entire comment | correctly. Zero pointsif more
should be circled for full credit. than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie — the numbers or
markings areillegible).
64 The declaration of an instance variable | One point if code segment
is not the assignment of that variableto | identified correctly, zero
avalue. Examples of thisinclude: points if not identified
private Puppy _puppy; correctly. Zero pointsif more
private ID _id; than one segment identified
private Animal _animal; for each question. Zero
private Toy _toy; pointsif it isnot clear what is
private String[] _sounds; | beingidentifiedfor which
private java.aw . Col or question (ie —the numbers or
_color; markings areillegible).
65 The actual parameter isthe value One point if code segment

passed into amethod call. Therefore,
this answer must be in amethod call to
be correct. Some examplesinclude:
“App constructor called.”
new Toy()
this
puppy
“App constructor end”
this. get Toy(). get Col or ()
col or. darker ()

identified correctly, zero
points if not identified
correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie —the numbers or
markings areillegible).

364

APPENDIX B GRADING GUIDELINE FOR EXAM

sounds
66 The formal parameter is the parameter | One point if code segment
declared in the method signature. This | identified correctly, zero
declaration includes both the type and | pointsif not identified
name of the parameter and both must | correctly. Zero pointsif more
be circled for full credit. Some than one segment identified
examplesinclude: for each question. Zero
IDid pointsif it isnot clear what is
String[] args being identified for which
java. am . Col or col or question (ie —the numbers or
App app markings areillegible).
Ani mal ani mal
Toy toy
67 Any statement that is of the form One point if code segment
System out . printl| ndisplays | identified correctly, zero
information to wherever out pointsto. | pointsif not identified
The entire System.out statement should | correctly. Zero pointsif more
be circled for full credit. than one segment identified

for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie — the numbers or
markings areillegible).

68 The access control modifiersfor Java | One point if code segment

arepublic,private,and identified correctly, zero
pr ot ect ed. Circling any one of pointsif not identified

these will earn full credit. correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie — the numbers or
markings areillegible).

69 Accessors get information fromthe | One point if code segment
instance variables. They commonly | identified correctly, zero
have the name getX. Theonly three | pointsif not identified
accessors are get Col or definedin | correctly. Zero pointsif more
ID, get Toy defined in Animal, and | than one segment identified

get Col or definedin Toy. Theentire | for each question. Zero
method definition from publictothe} | Pointsif itisnot clear what is
needs to be circled for full credit. being identified for which
guestion (ie — the numbers or
markings areillegible).
70 Mutators set the information stored in | One point if code segment

the instance variables. They
commonly have the name setX. The

identified correctly, zero
points if not identified

APPENDIX B GRADING GUIDELINE FOR EXAM

365

only three mutators are set | D defined
in App, set Col or definedinID, and
set Col or definedinToy. The
entire method definition from public to
the } needsto be circled for full credit.

correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie — the numbers or
markings areillegible).

71 Objects are created by using the One point if code segment
keyword new in Java. Anytimenew is | identified correctly, zero
used in code an object iscreated. The | pointsif not identified

examplesin this code are: correctly. Zero pointsif more
new Toy() than one segment identified
new | D(this, puppy) for each question. Zero
new App() pointsif it isnot clear what is
being identified for which
guestion (ie — the numbers or
markings areillegible).
72 Examples of method calsinthe code | Onepoint if code segment

are
System out. println(“App
constructor called.”)

this.setlID(new | D(this,
puppy))

System out. println(“App
constructor end.”)

_toy. doSomet hi ng()
super (toy)

t hi s. doSonet hi ngWt hThi sCo
| or (this.getToy().getCol or

this. get Toy().get Col or ()
Thi s. get Toy()

this.get Toy().set Col or(col
or.darker())

Col or. dar ker ()

super . sonet hi ngShoul dHappe
n()

identified correctly, zero
points if not identified
correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie —the numbers or
markings areillegible).

366

APPENDIX B GRADING GUIDELINE FOR EXAM

thi s. get Toy() . doNot hi ng()
System out . printl n(_sounds
Any call to the constructor will also be

accepted for full credit for this
guestion.

73 The method return typeis specified in | One point if code segment
the method signature beforethe name | identified correctly, zero
of the method. If the method doesnot | pointsif not identified

return anything the keyword voidis | correctly. Zero pointsif more
used. Inthiscode, return types are than one segment identified
voi d,j ava. aw . Col or, and Toy. | for each question. Zero
These words must be circled in the pointsif it isnot clear what is
method signature to be given full being identified for which
credit. guestion (ie —the numbers or
markings areillegible).

74 The name of the superclass of aclass | One point if code segment
follows the keyword extends. Inthis | identified correctly, zero
code, the only superclassis Ani mal , | pointsif not identified

which is the superclass of Puppy. correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie — the numbers or
markings areillegible).

75 In this code, Puppy isthe subclassof | One point if code segment
Animal. Thisistheonly exampleof | identified correctly, zero

inheritance in the code given. points if not identified
correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie — the numbers or
markings areillegible).

76 Theonly interface declared in thiscode | One point if code segment

exampleis Col or abl e.

identified correctly, zero
points if not identified
correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is

APPENDIX B GRADING GUIDELINE FOR EXAM

367

being identified for which
guestion (ie — the numbers or
markings areillegible).

77

The only class that implements an
interface in this code exampleis | D.

One point if code segment
identified correctly, zero
points if not identified
correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie —the numbers or
markings areillegible).

78

In the class Animal, the constructor is
overloaded, so either one can be
identified for full credit. In Puppy, the
constructor is overloaded as well, so
either one can be identified for full
credit.

One point if code segment
identified correctly, zero
points if not identified
correctly. Zero pointsif more
than one segment identified
for each question. Zero
pointsif it isnot clear what is
being identified for which
guestion (ie —the numbers or
markings areillegible).

Subjective questions will be the most time consuming of the questions on the exam to

grade. All but four of these questionsinvolve grading student code segments. When

grading a segment of student code, the syntax of the codeis not what is graded.

However, the syntax will be present the answer and will play some role in the grading by

way of helping the rater to seeif the student understands how to solving the problem.

Grading will be using atriage system of grading. Eight pointsis awarded for an

answer that has all sufficiently used the main themes of the answer. Each question’s

themes are given in the chart following this section. If some, but not all of the themes are

368

APPENDIX B GRADING GUIDELINE FOR EXAM

present or adequately addressed, four pointsis awarded. If none of the themes are

present or adequately addressed, zero points are awarded.

However, the fundamental pieces of each question are the main themes addressed by

each answer, not the intricate syntactic minutia of the particular language of

implementation. This means, that if the correct name for amethod isadd and the

student writesi nsert instead, points should not be deducted for this mistake, provided

that an API was not given to help answer a particular question.

These details are further elaborated in the grading guideline chart for each question

given below. Note that question 43, 44, 57, and 58 are not coding questions and have

different point breakdowns.

Question
Number
(SG)

Tota Points
Possible for
Question

Further discussion of grading of question

5

8

Student must demonstrate the ability to use an iterator or afor-each
loop, and properly use the color when calling the setColor method. If
no iterator is used, zero points awarded.

For an iterator, the exact method names (hasNext() and next()) are
not necessary for full credit, but aloop stopping when there are no
more el ements and getting the next el ement are necessary. (4 points)

Inside the loop, student must call the setColor method passing the
elements from the collection in as parameters. (4 paints)

If using afor-each loop, syntax does not have to be perfect, but
student must demonstrate knowledge that the structure is for-each
element of the collection named colorsForBackground (4 points), call
setColor and pass in each element in the body of the for-each loop (4
points).

Creating anew array that islarger than the array passed in asa
parameter (4 points).

APPENDIX B GRADING GUIDELINE FOR EXAM 369

Copying contents of original array into new larger array (4 points).

New array should not simply be one bigger than previous array.
Preferableisan array that is twice as big asthe origina, but any
significant growth will suffice (the benchmark was a growth of 10
elements).

If the new array is not sized big enough, award only 4 points.

10

Creating anew array of the appropriate size (4 points).
Inserting appropriate elementsinto array (4 points).

Vauesthat are inserted into the array are squares of the array index.
The correct syntax for squaring a number should be something like:
element * element. However, full credit should be awarded for
variations like element”2 or element®.

11

Basic find structure (ie looping through the structure and maintaining
some sort of “flag” about the status of the search, and returning that
value when the search is over). [4 pointg]

In this case, it isimportant for the student to realize that this structure
does not have an iterator and needs a system of nested loopsto search
it. [4 points]

Of secondary importance is the actual syntax for dealing with a 2D
array. Syntax can beincorrect and student should still earn full
pointsif al the above criteria are met.

If only basic find structure is there, or if an iterator is used in one
loop instead of nested loops, or if thereis simply only one loop used,
award only four points.

12

The programmer must be sure to maintain the linkage of the nodesin
thelist after the node is removed.

There are afew cases that must be given some sort of consideration
in the code to receive full credit:

- Finding the node that is to be removed (using a loop of some
sort)

- The case when the node to be removed is the head of the list

- The case when the node to be removed is somewhere in the
middle of thelist or at the end of thelist

Missing one of the above bullet points constitutes a question only
receiving half credit (4 points). Missing more than one will result in
receiving 0 points.

370

APPENDIX B GRADING GUIDELINE FOR EXAM

In each of these cases, thereis what we describe as a* null-check”
that should be performed in order to successfully restore the links of
thelist. For example, every call to getNext() or getPrev() should be
preceded by a check to make sure that null is not returned. These
checks of the valuesin the list indicate a student that really has a
mastery of the material, but is not an integral part of the nature of
deleting a node from this structure. Therefore, if a student does not
provide adequate checking, but satisfies the bullet points above, they
should not be deducted points.

23

Students should receive full credit only if they express both the ideas
that:
— when aclassinherits from a superclass, it inherits the
superclass’ methods
— astack should only be LIFO and have methods push, pop,
peek

If only one of these ideasis adequately expressed, award only 4
points.

43

One point awarded for student indicating that the statement was false.
Two points awarded for the correction of the Big-O statement,
stating:

n®+ 2n + 25 = O(n% or any other proper Big-O bounds.

If the student selects true, zero points awarded.

The answer to this question istrue, so three points are awarded if true
is answered, zero pointsif falseis chosen.

57

Base case of recursion must be given.
ThebasecasesareL(1) =1land L(2) = 1.

If only oneis given, award half credit.

If only L(1) and L(2) are listed, award full credit.

If the answer given is 1, do not award any credit.

58

Recursive case of recursion must be given.
Therecursive caseisL(n) = L(n-1) + L(n-2) wheren> 2.

If al partsare correct and n>2 is the only thing missing, award full
credit.

If L(n) isgiven astherecursive case and L (1) and L(2) are given as
answersto 57, award full credit.

APPENDIX B GRADING GUIDELINE FOR EXAM 371

If the expression L(n-1) + L(n-2) is given, award zero points.

59

Both base cases return the correct value (4 points).
Recursive case correct computes the value (4 points).

If the method is not recursive, award zero points.

101

Loop through thefile. End of file not specified in API, so a
reasonable guess as to how to know when thefileisat end is
acceptable for full credit (4 points).

Place each line of thefileinthe array list (4 points). Recall that
exact name of insert method on ArrayList is not necessary for full
credit.

Note: If student writes something similar to this:
While (in.readLing() != xxx) {
//some code that callsreadLing() again

}
Only award 4 points

102

L oop through the collection of strings and keep count of number of
strings that are correct size/length (4 points).

The ability to find in the API the method that can be used to find the
string' s length (4 points).

While student were given the parametersfor the correct size, theidea
of correct sizeis more important than exactness. For example,
incorrect boundary conditions should till receive full credit.

Students should not receive full credit for using incorrect method
name for length in this case because the API for the String class was
given to them. Only award 4 pointsif student uses incorrect name.

103

L oop through the collection of strings and look at each string in that
collection to find the number of Psin that string and then in the
overall collection (4 points).

The ability to find in the API the methods which would be most
useful for finding the Psin the string (4 points).

If student performs operations correctly, but does not check for both
upper and lower case p, full credit should still be awarded.

Students should not receive full credit for using incorrect method
names for length or other string operations they may chooseto usein

372 APPENDIX B GRADING GUIDELINE FOR EXAM

this case because the API for the String class was given to them.
Only award 4 pointsif student uses incorrect names.

To compute the student’ s score on the exam, you should add up the total points
earned and divide by the total number of points on the test (354 if using all the questions

on the exam), and then multiplying by 100 to get a percentage score.

Appendix C

Reviewer Questionnaire

Thank you for agreeing to review this assessment instrument for CS1-CS2.

Asyou may know, the exam is designed to be paradigm-independent, so a student who takes an
objectsfirst, imperative-first, or functional-first CS1 should be able to successfully complete this
exam.

However, the creation of this exam presented two unique challenges. First, thereisalot of
material inthefirst year courses. Some of the material may not be represented in the exam due to
time considerations. Thisis athree-hour, pencil and paper exam, which limited the scope and
amount of questions that could be on the exam.

Second, it isimportant to remember the nature of programming-first approachesto CS1-CS2.
Many of the questions on this test needed code examples or require the student to write code.
Therefore, alanguage needed to be chosen for the exam. This version of the examisa Java
version. It isexpected that future instructors who use the exam will be able to change the
language to one that is most appropriate for their students.

To complete the review of this exam, | would appreciate your answers to the following questions.
Y ou only need to provide me with an electronic version of your responses to the questions, so
please fed freeto insert them directly into this document after each question.

In addition, if you feel you have other comments to offer about the exam or about particular
guestions, please feel free to give comments directly on the exam itself (using the Word
commenting features or whatever method you' d prefer). If you have commented, please send the
commented version back to me. Otherwise, al you need to send isthis questionnaire.

Thank you again.

373

374 APPENDIX C REVIEWER QUESTIONNAIRE

Name of Reviewer:
Institution:
Language used in CS1/CS2:

Approach used in CS1/CS2 (objects-first, etc):

1. What isyour overall impression of this exam? Please feel free to speak specifically about
the difficulty of questions, the nature of the questions (analysis of code, versus code
generation, etc), the type of questions (multiple-choice, short answer, etc) or any other
impressions you have about the exam.

2. Asidefrom any language issue, would you feel comfortable giving this exam at the end
of your CS2 course? With the present content, do you believe it adequately coversthe
material presented during your first year courses? If you have reservations about giving
the exam, what are they?

3. Arethere any topicsthat you fed are given too much coverage in the exam?

4. Aretheretopicsthat you feel are missing that would dramatically improve the exam
without extending it beyond the constraints of athree-hour paper and pencil exam?

5. If you have any comments, criticisms, or suggestions about a particular question or
directionsfor a particular question set, please indicate those here. Please include
guestion numbers.

6. Please add any additional comments here

Appendix D

Demographic Questionnaire

Please take amoment to fill out these demographic questions before beginning the exam.
Please do not place your name or person number on this demographic questionnaire. If
there is aquestion you do not feel comfortable answering, please leave the answer blank.
There are atotal of 15 questions.

1. What is your gender?
a Mae
b. Female

2. What is your age?
18

19

20

21

22

23

24

25—-29
30-34
35-39

k. 40 -44

|. 45—-49

m. 50 and over

T Se@Tmoa0 o

3. What is your year in school?
a. Freshman
b. Sophomore
. Junior
d. Senior

375

376 APPENDIX D DEMOGRAPHIC QUESTIONNAIRE

4. What is your major?
a. Computer Science
b. Computer Engineering
c. Other (Please indicate)

5. If you are not a computer science/engineering major, are you planning to pursue a
minor?

a YES

b. NO

6. Did you take CSE 115 at UB? (If no, skip to question 9)
a YES
b. NO

7. Which semester did you take CSE 115?

8. Did you ever fail CSE 115?
a YES
b. NO

9. If you did not take CSE 115 at UB, why not?
a. AP credit
b. Transfer credit from another school

Give name of school:

. Other (please state reason — like “not amajor”)

10. Did you take CSE 116 at UB? (If no, skip to question 13)
a YES
b. NO

APPENDIX D DEMOGRAPHIC QUESTIONNAIRE 377

11. Which semester did you take CSE 1167

12. Didyou ever fal CSE 1167
a YES
b. NO

13. If you did not take CSE 116 at UB, why not?
a AP credit
b. Transfer credit from another school

Give name of school:

c. Other (please state reason — like “not amajor”)

14. Please circle the number of years programming experience you had with the
following languages prior to taking CSE 115 and CSE 116 (or equivalent courses). |If
you did not program in that language prior to CSE 115 & CSE 116, do not circle any
answer. Thereis space at the end to insert other languages not given in the list.

C
a lyear
b. 2 years
c. 3years
d. 4+ years

C++
a lyear
b. 2 years
c. 3years
d. 4+ years

Java
a lyear
b. 2 years
c. 3years
d. 4+ years

378

HTML

1 year

2 years
3 years
4+ years

cooTw

Perl

1 year

2 years
3 years
4+ years

cooTw

JavaScript
a lyear
b. 2 years
c. 3years
d. 4+ years

VB
a lyear
b. 2 years
c. 3years
d. 4+ years

VBScript
a lyear
b. 2 years
c. 3years
d. 4+ years

Fortran
a lyear
b. 2 years
c. 3years
d. 4+ years

BASIC
a lyear
b. 2 years
c. 3years
d. 4+ years

APPENDIX D DEMOGRAPHIC QUESTIONNAIRE

APPENDIX D DEMOGRAPHIC QUESTIONNAIRE 379

Assembly
a lyear
b. 2 years
c. 3years
d. 4+ years

Other (Give Name)
a lyear
b. 2 years
c. 3years
d. 4+ years

Other (Give Name)
a lyear
b. 2years
c. 3years
d. 4+ years

15. What was the first programming language you programmed in ever?
acC
b. C++
c. Java
d. VB
e. Basic
f. Other (Please state):

380

Appendix E

Analysis of Raters of Exam

Question 5
- Correc
Exam Rater Original Correct
Number | Number | Grade ted Rater Discussion of Conflict Resolution
Grade
The student did not demonstrate proper
1 4 creation of iterator nor use it to cycle
2003 0 2 through the elements (called
5 0 collectionName.getNext() instead of
iterator.getNext()).
2009 ; g 0 2 Student did not use iterator at all.
1 4 . .
2049 > 0 0 2 Student did not use iterator at all.
2050 ; g 0 2 Student did not use iterator at all.
1 38 The mechanism for looping with the
3030 4 Neither | iterator isincorrect, but the other aspects
2 0 are good.
1 4 Student does not demonstrate knowledge
of what for-each |oop does by their
3133 4 1 parameter to setColor, they aretrying to
access the element in the collection by a
2 8 color (thetype, not avalue).
1 8 Student does not use iterator properly,
3053 0 5 using a counter for looping and does not
call setColor appropriately or even pass
2 0 in aparameter. Too many errors

381

382 APPENDIX E ANALYS SOF RATERS OF EXAM

Student does not use iterator properly
1 0 and does not access elements from the
3261 0 1 collection properly in neither case using
2 4 the name of the collection, but rather the
type.
1 4 Student uses name of collection as name
3262 0 2 of iterator, not proper looping with
2 0 iterator, not proper call to setColor.
1 38 Student uses type instead of name of
3276 8 1 collection in for-each loop, but still
2 4 knew the form of the loop.
1 4 Student not appropriately using iterator
3352 0 2 and loop combination. Calling setColor
2 0 and passing in the iterator.
1 0 Student uses name of collection as name
3399 0 1 of iterator, not proper looping with
2 4 iterator, not proper call to setColor.
Question 9
- Correc
Exam Rater Original Correct
Number | Number | Grade GtrZ?je Rater Discussion of Conflict Resolution
2002 1 8 8 1 Student penalized too harshly for not
2 4 returning array.
1 4 Student creates new array of bigger size
appropriately but does not demonstrate
2003 4 1 .
knowledge of copying elements from old
2 0 array to new one.
1 4 Student penalized too harshly for not
2004 8 2 . .
2 8 sizing array to double in the new array.
1 4 ,
2007 3 5 Student put [] in front of array, one
5 8 grader took off half credit for this.
2009 1 4 8 Neither | Student penalized for using

APPENDIX E ANALYSSOF RATERS OF EXAM 383

System.arrayCopy. Thisis appropriate
2 0 . .
for this question.
1 4 Student penalized too harshly for not
2015 8 2 sizing array to doublein the new array.
2 8 The new size was ill large enough.
2022 1 4 4 1 Studen_t does not correctly create the
2 8 new, bigger array.
1 4 Student penalized too harshly for not
2025 8 2 sizing array to doublein the new array.
2 8 The new size was still large enough.
1 4 Student penalized too harshly for not
2028 8 2 sizing array to double in the new array.
2 8 The new size was ill large enough.
1 4 Student penalized too harshly for not
2030 8 2 sizing array to double in the new array.
2 8 The new size was ill large enough.
1 4 Student penalized too harshly for not
2038 8 2 sizing array to doublein the new array.
2 8 The new size was ill large enough.
Student mixed array notation and
1 8 method calls. However, they created the
3109 8 1 new array appropriately and did move
5 4 the elements, but in asyntactically
incorrect way.
Student uses clone to copy array, which
1 8 would be ok, if not perfect syntax except
for the fact that they assign the reference
3124 4 2 from the new array to the clone of the
original, thereby erasing the resizing.
2 4 Student has some understanding, but not
full understanding.
1 4 Student code has all required partsand is
3131 8 2 actually syntactically perfect as well.
2 8 Simple grader error.
1 8 One grader too harsh about correct
3135 8 1
2 4 syntax for System.arrayCopy.

384

APPENDIX E ANALYS SOF RATERS OF EXAM

1 4 Student using for-each inappropriately
3185 with array. Believesit loops through
2 8 indices, but it does not.
1) Student did not appropriately
3186 demonstrate knowledge of copying from
2 4 old array to new array.
1) Student did not appropriately
3308 demonstrate knowledge of copying from
2 4 old array to new array.
1) Student did not appropriately
3329 demonstrate knowledge of copying from
2 4 old array to new array.
1 4 Student penalized too harshly for not
3352 .
2 8 returning array.
3353 1 0 Grader error — student should have
2 4 received half.
1 4 Student has half of the themes — creating
3372 an array of bigger size, but did not
demonstrate knowledge of copying from
2 0 old array to new array.
1 8 Student penalized too harshly for not
3376 .
2 4 returning array.
3395 ; i Student did not create the array.
1 0 Student has no clear understanding of
syntax of arrays. Brackets everywhere
3399 :
with no rhyme or reason. Too much
2 4 confusion — zero points.
1 8 Student penalized too harshly for not
3423 .
2 4 returning array.
1 4 Student clobbers over reference to array
3438 by reassigning it to old array —
demonstrating lack of fundamental
2 0 knowledge about arrays.
1 8 Student did not appropriately
3460 demonstrate knowledge of copying from
2 4 old array to new array.
3475 1 4 Grader error — student should have
2 0 received half.

385

APPENDIX E ANALYSSOF RATERS OF EXAM
Question 10
Exam Rater | Original Correct Correct . : . :
Number | Number | Grade ed Rater Discussion of Conflict Resolution
Grade
2007 1 4 o) Student put [] in front of array name.
2 8 One grader took off half credit for this.
1 4 Declares private variables in method,
3052 0 2 does not create array of appropriate size,
2 0 does not use indices of array properly.
Creating an iterator that is not used in
1 8 the code (not needed and not
appropriate). However, student created
3069 4 Neither | array of appropriate size and attempted
to put the correct valuesin it, but using a
2 0 method instead of the index, so half
credit is most appropriate.
1 8 Grader too harsh about syntactic issue
3177 8 1 o o
2 4 with inserting into array.
1 8 Grader too harsh about syntactic issue
3186 8 1 oL N
2 4 with inserting into array.
3203 1 8 4 5 Student inserted incorrect value into
2 4 array.
3220 1 8 4 5 Student inserted incorrect value into
2 4 array.
1 8 Grader too harsh about syntactic issue
3225 8 1 oL L
2 4 with inserting into array.
3262 1 4 4 1 Createsarray i ncorrectly, but then
2 0 inserts properly.
1 8 Student did not do assignment into array,
3976 4 2 but knew that cubing was important.
Too much confusion about issue for full
2 4 credit.
1 8 Grader too harsh about syntactic issue
3302 8 1 oL L
2 4 with inserting into array.
1 8 Grader too harsh about syntactic issue
3329 8 1 oL N
2 4 with inserting into array.
3372 1 8 4 2 Not appropriately using loop variable as

386 APPENDIX E ANALYS SOF RATERS OF EXAM

index and calling aweird getindex()
method.

Grader too harsh about syntactic issue

3374 with inserting into array.

Grader too harsh about syntactic issue

3382 with inserting into array.

Grader too harsh about syntactic issue

3423 with inserting into array.

Grader too harsh about syntactic issue

3438 with inserting into array.

Grader too harsh about syntactic issue

344t with inserting into array.

Grader too harsh about syntactic issue

3460 with inserting into array.

NIRPINIRPINIPINIPINIFP[INFP] DN
M| |O(~|O|D|[O|d|[O[(~]|O| >

Question 11

Exam Rater | Original Coelrzject Correct Discussion of Conflict Resolution
Number | Number | Grade Grade Rater

1 4 Basic find structure present using two
2025 8 Neither | loopseven if syntax not perfect. Graders
2 0 too harsh about syntactic issues.

One grader believed that the code would
8 1 not work —in fact it is syntactically
perfect.

2034

One grader believed that the code would
8 1 not work —in fact it is syntactically
perfect.

2036

H | 0O | M|

1 4 Student shows a nested looping structure,
but believes that exceptions will be thrown
2038 4 1 if and if-statement does not evaluate to
true. Fundamental issues about code that
2 0 deserved only half credit.

Basic find structure present using two
3076 loops even if syntax not perfect. One
grader was too harsh about syntactic
issues.

APPENDIX E ANALYSSOF RATERS OF EXAM

387

3171 1 4 8 5 One grader too harsh about syntactic issues
2 8 with looping structure.
3917 1 0 Student believed that for-each loop would
4 2 work and did not have two loops, but basic
2 4 find structure is there.
3261 1 0 Student believed that one loop would work
4 2 if based on size of the structure, but basic
2 4 find structure is there.
1 8 Student believed that one loop would work
3374 4 5 if based on size of the structure, but basic
find structure is there — should have been a
2 4 deduction for not using two loops.
3395 1 4 0 5 Student using double as hame of array, not
2 0 array name.
3438 1 0 Student believed that one loop would work
4 2 if based on size of the structure, but basic
2 4 find structure is there.
1 0 Student believed that one loop would work
3447 4 2 if based on size of the structure, but basic
2 4 find structure is there.
Question 12
Exam Rater Original | Corrected | Correct
Number | Number | Grade Grade Rater Discussion of Conflict Resolution
1 0 Student did not handle head case.
Loop is present, but the reference does
2007 0 1 .
not seem to advance. Does not link up
2 4 around deleted node properly.
1 0 Student has loop for finding nodein
2009 4 2 place, but other issues not properly
2 4 addressed.
3005 1 8 4 5 Not covering head case (missed by one
2 4 grader)

388 APPENDIX E ANALYS SOF RATERS OF EXAM

Received zero pointsinitially because
the grader thought that the structure did
not contain aloop to go through the
list. However, it does, but the
fundamental structure of the codeisan
if-else, where the el se case basically
3066 4 Neither | saysloopif _headisnull. Thereisaso
a problem with the advancement of the
reference throughout the list.

However, there is enough internal to

2 8 the code to award half credit, but not
full credit because of the two above
mentioned errors. .

1 0 Student calling remove method from
3076 0 1 their code — thisis the method they
2 4 were supposed to write.

Student resetting this to go through the
1 0 list, which would not be appropriate as
the origina thisin the method points to
3120 0 1 alist and they are then assigning that
referenceto anode. They are also not
2 8 handling the head case, or checking for
nulls.

Student used a construct described in
class to solve this problem (a Visitor).
1 0 Thislist does not support avisitor,
which the student pointed out, but
proceeded to use anyway. However, if
the list accepted avisitor, the code is
almost perfect, warranting half credit.
2 4 Thisis acase where domain
knowledge of way the courses are
taught comes in handy.

3135 4 2

3164 ; g 4 1 Head case missing..
4 Head case missing. However, loops

3253 4 1 through and would work for other

2 0 cases.

1 4 Has head case and looping structure.
3312 8 2 No null cases checked, but deserving of

2 8 full credit.
3321 1 8 4 2 Head case missing.

389

APPENDIX E ANALYSSOF RATERS OF EXAM
2 4
1 4 .
3359 > 5 0 2 No loop in code.
1 8 -
3409 > 7 4 2 Head case missing.
Question 23
Exam Rater Original Correct Correct
Number | Number | Grade Gre:de Rater Discussion of Conflict Resolution
2007 1 8 8 1 Student demonstrates why the inheritance
2 4 would break the stack invariant.
2011 1 8 8 1 Student demonstrates why the inheritance
2 4 would break the stack invariant.
2014 1 8 8 1 Student demonstrates why the inheritance
2 4 would break the stack invariant.
2025 1 8 4 | Neither Student expresses what_ inheritance will do,
2 0 but not what problems it would cause.
1 4 Student does not express the nature of the
2028 4 1 inheritance relationship accurately in the
2 8 answer.
2038 1 8 8 1 Student demonstrates why the inheritance
2 4 would break the stack invariant.
2046 1 4 0 5 Student_do&s not express either idea
2 0 appropriately.
1 4 Student expresses stack invariant property,
2049 4 1 but not enough about what would happen in
2 8 the inheritance.
1 0 Student asserts that stacks are ordered and
3081 0 1 can be popped at the top or pushed at the
bottom, demonstrating a fundamental
2 4 misunderstanding of the concept of a stack.
Student did not articulate clearly what the
3095 1 4 4 1 invariant of astack should be or why the
inheritance gives the “ user too much power”.

390 APPENDIX E ANALYS SOF RATERS OF EXAM

However, thereis some level of
2 8 understanding that this would be
inappropriate, so half is more appropriate.
Student expresses difference between stack
1 4 and vector and that inheritance would not be
3120 4 1 appropriate because of inheriting methods.
Ideas not articulated clearly enough to
5 0 illustrate full understanding, but enough to
alow for half credit.
1 0 Student does not show understanding of
3146 0 1) . -
2 8 issue with why thisis a problem.
1 4 Student demonstrates belief that this should
3164 4 1 not be allowed, but does not articulate why it
2 8 would be inappropriate.
1 4 Student shows that you should not be
allowed to access the stack internally, but
3171 4 1
does not clearly state why you would be
2 8 allowed to do so using inheritance.
1 0 Student demonstrates that stack should not
3174 4 Neither |be accessed in the middle,but not articulated
2 8 enough of the main ideasfor full credit.
3177 1 4 8 5 _Student does demonstrate understanding of
2 8 issues.
1) Student does not indicate why you would not
3187 4 2 |want the stack to inherit the methods from
2 4 Vector.
1 8 Upon a second reading of the answer, the
grader who gave full credit realized that
3193 0 2 .
student does not express either of
2 0 fundamental ideas needed for full credit.
1 4 Student discusses how inheritance works, but
3220 4 1 not about the appropriate invariant for a
2 8 stack.
3262 1 8 . , [Student demonstrates understanding of what
> 4 inheritance will allow, but not why it is bad.
3382 1 0 . , [Student demonstrates understanding of what
> 4 inheritance will allow, but not why it is bad.

APPENDIX E ANALYSSOF RATERS OF EXAM 391

1 0 Student demonstrates facts about a stack, but
3389 0 1 cannot put them together to answer question.
2 4 Zero appropriate.
1 0 Student demonstrates facts about a stack, but
3399 0 1 .
> 4 cannot put them together to answer question.
3401 1 4 . . [Student demonstrates understanding of what
> 8 inheritance will allow, but not why it is bad.
1 0 Student demonstrates facts about a stack, but
3404 0 1 .
> 4 cannot put them together to answer question.
3409 1 8 8 1 Student QIoes express both ideas needed for
2 4 full credit.
1 4 Student demonstrates knowledge of stack
3447 4 1 invariant, but not why inheritance will break
2 8 that.
Questions 57 and 58
Original | Original |Correct
Exam Rater Correct
Grade | Grade | ed Discussion of Conflict Resolution
Number | Number (57) (58) | Grade Rater
One of the graders did not give credit
1 4 when student wrote n=1, n=2, they
wanted the entire statement. However,
2004 4 1 |if studentsfollowed through on 58
with n> 2, clearly indicating the
2 0 difference between the base case and
recursive cases.
(57) One of the graders did not give
credit when student wrote n=1, n=2,
2007 1 4 4 j Egg i g;g they wanted the entire statement.
However, if students followed through
on 58 with n > 2, clearly indicating the

392 APPENDIX E ANALYS SOF RATERS OF EXAM

difference between the base case and
recursive cases.

(58) Follow through due to answer on
57.

1 4 Student uses the values of n as the
2009 4 1 answer, but_ showsthe recursive case
for 58, putting the three piecesin the
correct positions.

(57) One of the graders did not give
credit when student wrote n=1, n=2,
they wanted the entire statement.
However, if students followed through
4(57) | 1(57) |on58withn> 2, clearly indicating the
4(58) | 1 (58) |difference between the base case and
recursive cases.

2011

(58) Follow through due to answer on
57.

(57) One of the graders did not give
credit when student wrote n=1, n=2,
they wanted the entire statement.
However, if students followed through
4(57) | 1(57) |on58withn> 2, clearly indicating the
4 (58) | 1(58) |difference between the base case and
recursive cases.

2014

(58) Follow through due to answer on
57.

(57) Student uses the values of n asthe
1 4 4 answer and expressesn > 2 as
recursive case, which puts the pieces

46N LGN fin the correct places.

2015 4(58) | 1 (58)

2 0 0 (58) Follow through due to answer on
57.

APPENDIX E ANALYSSOF RATERS OF EXAM

393

2025

4 (57)
4 (58)

1(57)
1 (58)

(57) One of the graders did not give
credit when student wrote n=1, n=2,
they wanted the entire statement.
However, if students followed through
on 58 with n > 2, clearly indicating the
difference between the base case and
recursive Cases.

(58) Follow through due to answer on
57.

2034

4 (57)
4 (58)

1 (57)
1 (58)

(57) Student usesL(1) and L(2) for 57
and L(n) for n> 2 for 58, showing the
piecesin the correct places.

(58) Follow through due to answer on
57.

2036

Student uses L(1) and L(2) for 57 and
entire recursive case for 58, showing
the piecesin the correct places.

2050

4 (57)
4 (58)

1(57)
1 (58)

(57) Student usesL(1) and L(2) for 57
and n > 2 for 58, again showing pieces
in correct places.

(58) Follow through due to answer on
57.

3033

o

Grader error.

3186

4 (57)
0 (58)

1 (57)
1 (58)

(57) Student’ s notation for base case
weird, but idea expressed. Full credit

appropriate.

(58) Student did not express n > 2, but
rather that n!'= 1 and n!= 2, which
demonstrates a fundamental mis-
understanding of sequences.

394 APPENDIX E ANALYS SOF RATERS OF EXAM

(57) Student gives one of the correct
base cases, but not both.
1 0 0
267 | 2 (57) |(58) Student not using correct notation
3187 5 ESS; Neither |for recursive case, smply writes L(n),
(58) |but since did not get 57 correct, not
5 5 4 sureif student has complete
understanding of when the recursive
caseis appropriate.
1 2 Student lists all cases asrecursive
3189 0 2 case. No understanding of issue. Zero
2 0 appropriate.
1 4 Student not using correct notation for
recursive case, simply writes L(n), but
3238 2 2 |sincedid not get 57 correct, not sureif
student has complete understanding of
2 2 when the recursive case is appropriate.
3260 1 4 0 5 Grader error — misread student
2 0 response
1 2 Student mis-copied one of the base
3312 4 2
2 4 cases, one grader took off.
1 2 Student mis-copied one of the base
3423 4 2
2 4 cases, one grader took off.
3447 1 4 4 1 Grader error — misread student
2 0 response.
1 0 Student did not express n > 2, but
3460 0 1 rather that n =1 and n!= 2, which
demonstrates a fundamental mis-
2 4 understanding of sequences.
Question 59
Exam Rater Original | Corrected | Correct
Number | Number | Grade Grade Rater Discussion of Conflict Resolution
Student confuses recursive definition
2001 1 4 0 2 and the name of the method. Asksif

APPENDIX E ANALYSSOF RATERS OF EXAM

395

L(1) = 1 and then does not call method
again in recursive case, but callsL,
Zero points appropriate.

2007

Student has valid recursive method, but
ahelper method that callsit. Helper
method would not return the
appropriate value. However, the
student demonstrated the ability to turn
the recursive formulas into a method.

2011

Method is actually not recursive, even
though base cases are there.

2014

Uses the new switch-else construct.
Even though it is a syntax issue, the
students should know that those two do
not mix.

2028

Student mixes switch and if together,
but also does not call method in
recursive call, but rather copies
formula

2046

Method does not return anything.
Switch/otherwise construct used — does
not call method, but copiesthe
formula. Too many errors— zero
points.

3052

Upon another look at code, there is ho
structure, no method header or body
evident. Base cases not used, and not
realy recursive.

3065

Base cases not handled appropriately
and method is not recursive.

3074

The method is not recursive as both
graders noted, but student not
appropriately penalized.

3076

Student not appropriately handling
base cases, which pointsto a
fundamental lack of understanding of
how recursion works.

3133

Method is recursive and does have a
test for abase case, but it is not the
correct base case. However, it iswhat

396 APPENDIX E ANALYS SOF RATERS OF EXAM

the student believesis the base case as
2 4 evidenced by their answer to question
57.
3171 1 0 0 1 Method not recursive — grader noted,
2 4 but did not deduct properly.
1 0 Student not appropriately handling
3220 0 1 base cases, which pointsto a
fundamental lack of understanding of
2 4 how recursion works.
1 4 Base case and recursive case switched
in the code, demonstrating that student
3225 4 1 :
knew they were important, but has
2 8 them in incorrect order.
1 4 Thereis abase case and recursive case
3261 4 1 present, but will not execute correctly,
2 8 method has void return type.
1 0 The method is not recursive as both
3262 0 1 graders noted, but student not
2 4 appropriately penalized.
1 8 Looking at the code again showed that
. the method was not recursive at all
3352 0 Neither . C
meaning that zero pointsis more
2 4 appropriate.
1 0 The method is not recursive as both
3475 0 1 graders noted, but student not
2 4 appropriately penalized.
Question 101
Exam Rater Original Correct Correct
Number | Number | Grade ed Rater Discussion of Conflict Resolution
Grade
2007 ; g 4 1 ReadLine called twice.
2009 ; i 4 2 ReadLine called twice.
1 4 Student not inserting into array list —
2011 0 2 |throwing and catching exceptions — calling
2 0 readLine twice and calling output.
2030 1 4 4 1 Student had improperly inserted into array

APPENDIX E ANALYSSOF RATERS OF EXAM 397

list and was penalized too harshly for it.

2 0
2036 ; i 4 2 ReadLine called twice.
1 4 Student believed that readLine() will throw
2038 8 Neither |an exception at end of file, which is doesn't,
2 0 but if it did, code would work.
2049 ; 2 4 2 ReadLine called twice.
3033 ; i 4 2 ReadLine called twice.
Creating private, static and final variables
1 4 inside amethod. Arbitrarily deciding that a
3052 0 1 |filehasamax size of 50. Calling readLine()
5 0 on the filename (a String), not the
BufferedReader
3065 ; i 4 2 ReadLine called twice.
1 4 Not appropriately looping through file. Not
3069 0 2 reading in appropriately (using charAt, which
2 0 is not defined on a BufferedReader).
1 8 Looping on length of the string that
represents the filename, not on the length of
3074 4 2 [thefile. If student had run loop on in.length,
full credit would have been appropriate, but
2 4 in this case, half is appropriate.
1 4 No loop in code, afact missed by one of the
3095 2 0 0 2 graders.
1 4 Student uses loop to go through file and uses
3185 8 Neither |readLineto read. Insertsinto array list with
2 0 incorrect syntax. Main points covered.
1 0 Student looping through the stringsin the
3225 0 1 |filename (astring), not the BufferedReader
2 4 and not calling read method.
3257 ; g 4 1 ReadLine called twice.
3260 ; i 4 2 ReadLine called twice.
3262 ; i 4 2 ReadLine called twice.

398 APPENDIX E ANALYS SOF RATERS OF EXAM

1 4 Student believed that readLine() will throw

3312 8 2 an exception at end of file, whichis doesn't,
2 8 but if it did, code would work.
1 4 Student used for each loop (array :

3323 0 2 in.readLine()). Fundamental structure not
2 0 correct.

3399 1 8 0 5 _Studen_t trying to read from filename, which
2 0 isastring.

2401 1 4 A L [Student hasloop for reading (although really
2 0 far from correct) and call to readLine.

3423 1 8 4 5 Student runs loop on length of the filename
2 4 (astring) instead of thefile.

3432 ; i 4 2 ReadLine called twice.
1 4 Student using eof (which is not Java) which

3447 4 1 would be fine for full credit if the condition

was to keep reading until !eof, but the
2 8 student keeps going on eof.
Question 102
Exam Rater Original Correct Correct
Number | Number | Grade Gre:de Rater Discussion of Conflict Resolution

1 4 Student using readL ine and not appropriately

2011 0 2 . .
2 0 looking in collection.

2014 1 4 8 Neither Both graderg putting too much emphasis on
2 0 syntax. Basic themes present.

2020 ; g 8 2 Code correct — grader error.

2028 1 4 8 Neither Both graderg putting too much emphasis on
2 0 syntax. Basic themes present.

2036 ; g 8 2 Code correct — grader error.

2050 1 4 8 Neither Both graderg putting too much emphasis on
2 0 syntax. Basic themes present.
1 4 Boundary conditions were given too much

3029 8 2 . . .
2 8 weight in question.

APPENDIX E ANALYSSOF RATERS OF EXAM 399

3069 1 4 8 5 Student used array index notation and one
2 8 grader deducted for this mistake.
3124 ; i 8 1 Grader too harsh about returning.
3171 ; g 8 2 Grader too harsh about boundary conditions.
1 0 Weird indicator of the correct size of the
3186 4 2) .
2 4 string, but basic structure present.
1 4 Grader too harsh about syntax for inserting
3189 8 2 . .
2 8 into arraylist.
3217 ; g 8 2 Grader too harsh about boundary conditions.
2253 1 4 . ., |Goesthrough array list tofind length of each
> 0 string. Syntax errorstoo great for full credit.
1 8 Knows to check length of string for bounds
and increments count correctly, but does not
3262 4 2 .
have syntax even close for looping through
2 4 the array list.
1 4 -
3321 > 5 8 2 Grader too harsh about boundary conditions.
3323 1 8 8 1 Grader_ too harsh about correct accessto
2 4 array list.
1 4 Student used or instead of and, and was
3359 2 8 8 2 deducted.
1 0 Student not looping through collection
3389 0 1 |properly or using length method — adding
2 4 collection to another collection.
3401 ; g 8 2 Grader too harsh about returning.
3432 ; i 8 1 |Grader too harsh about returning.
3438 1 8 4 2 _Usescollectlon name as the name of an
2 4 iterator.
3475 1 4 . . [Student checking length on collection, not
> 8 strings inside, so not looping properly.

400 APPENDIX E ANALYS SOF RATERS OF EXAM

Question 103
Exam Rater | Original Correct Correct . . : .
Number | Number | Grade ed Rater Discussion of Conflict Resolution
Grade
1 4 . :
2009 > 5 8 2 One grader took off for incorrect call to size.
2014 1 4 8 Neither Graders too harsh about syntax — basic
2 0 themes present.
2020 ; g 8 2 Code correct — grader error.
2028 1 4 0 5 Question not finished. Not enoughinfoto
2 0 award credit.
2036 ; i 8 1 Code correct — grader error.
2038 ; g 8 2 Code correct — grader error.
2049 1 4 8 Neither Graders too harsh about syntax — basic
2 0 themes present.
1 4 Student demonstrates knowledge that
looping through collection isimportant and
2050 4 1 . . .
then looking for Psimportant, but not using
2 0 correct methods from API.
1 4 Loop counters not correctly
3029 4 1 incremented/reset. Does not show proper use
2 8 of loops.
3030 1 4 4 1 API not used correctly, calling amethod on a
2 8 char that isreally for a String.
1 4 API not used correctly because student
believes that charAt returns a String, and
3069 4 1 . . S
begins looping through string indices at 1,
2 8 which is not correct.
1 4 One grader being too harsh about the
3091 8 2 checking for both upper case P and lower
2 8 casep.
One grader felt that the student using afor-
each loop for a string was inappropriate.
3109 1 8 8 1 |After considering the main themes of the
guestion, it was felt is was reasonable for the
student to make this error that would be

APPENDIX E ANALYSSOF RATERS OF EXAM

caught by compiler because student knew
that looping through each character of string

2 4 was important step in looking for the letter p.
1 4 One grader being too harsh about the
3120 checking for both upper case P and lower
2 8 casep.
1 4 One grader being too harsh about the
3135 checking for both upper case P and lower
2 8 casep.
1 4 One grader being too harsh about the
3164 checking for both upper case P and lower
2 8 casep.
3185 1 0 Student only loops through the string, not
2 4 each string in the collection.
Thought student was not looking for both
1 4 cases of p. Upon re-examination of the code,
it was found that the student did not
understand the question and was actually
3186 .
looking for the number of occurrences of the
string “Ps’ in the strings. The student did
2 8 this correctly and should receive full credit
for the question.
1 4 Grader too harsh about syntactic issues with
3189 . . .
2 8 accessing elementsin array list.
1 4 One grader being too harsh about the
3217 checking for both upper case P and lower
2 8 casep.
1 4 Student writes aloop with a comment inside
3253 to “count P's’, which iswhat they needed to
2 0 demonstrate in the question.
1 4 One grader being too harsh about the
3260 checking for both upper case P and lower
2 8 casep.
1 4 One grader being too harsh about the
3302 checking for both upper case P and lower
2 8 casep.
3321 ; g Code correct — grader error.
3329 1 0 Only inner loop present to look for Psin

401

402

APPENDIX E

string, not to loop through all stringsin

2 4 collection.

1 0 Only inner loop present to look for Psin
3352 string, not to loop through all stringsin

2 4 collection.

1 4 Grader did not notice that student was
3368 ;

2 8 handling both cases of p.

1 4 One grader being too harsh about the
3401 checking for both upper case P and lower

2 8

case p.

