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Abstract

Changing preferences is very common in real life. The ex-
pressive power of the operations of preference change intro-
duced so far in the literature is limited toaddingnew informa-
tion about preference and equivalence. We discuss the oper-
ation ofdiscardingpreferences - preference contraction. We
argue that the property ofminimalityand the preservation of
strict partial ordersare crucial for contractions. Contractions
can be further constrained by specifying which preferences
should notbe contracted. We provide algorithms for comput-
ing minimal and minimal preference-protecting contraction.
We also show some preference query optimization techniques
which can be used in the presence of contraction.

Content areas: Knowledge Representation, Knowledge
Engineering, Databases

1 Introduction
A number of preference representation and reasoning frame-
works have been developed. Among the most popular ones
areCP-nets(Boutilier et al. 2004) and thebinary relation
framework (Chomicki 2003; Kießling 2002). In the CP-
net framework, preferences are represented as graphs. This
framework is simple and intuitive, but the expressive power
of the framework is limited. A number of extensions to that
model have been introduced (Brafman, Domshlak, & Shi-
mony 2002; Wilson 2004).

In the binary relation framework, preferences are repre-
sented as binary relations over objects. Preferences in this
framework arestrict partial orders (SPO): transitive and ir-
reflexive binary relations. The SPO properties are known
to capture the rationality of preferences (Fishburn 1970).
This framework can deal with finite as well as infinite pref-
erence relations, the latter represented using finiteprefer-
ence formulas. Connections between these two frameworks
have been recently established in (Endres & Kießling 2006;
Mindolin & Chomicki 2007), where it was shown how some
variants of CP-nets can be represented as preference formu-
las. The binary relation framework is the focus of our paper.

Working with preferences in any framework, it is naive
to expect that they never change. Preferences can change
over time: if one likes something now, it does not mean
one will still like it in the future. It was shown in (Doyle
2004) that along with the discovery of sources of preference

change and elicitation of the change itself, it is important
to preserve the correctness of preference model in the pres-
ence of change. In the binary relation framework, a natural
correctness criterion is the preservation of SPO properties of
preference relations.

Two SPO-preserving operations of preference change in
the binary relation framework have been proposed in the lit-
erature:preference revision(Chomicki 2007a) andequiva-
lence adding(Balke, Guntzer, & Siberski 2006). Informally,
preference revision is defined as follows. Let�0 be the ini-
tial preference relation which generally represents the user
preferences learned so far. Let�1 be arevising relation
consisting of new preferences generally corresponding to
the information learned from the user or provided by her di-
rectly. Then the revised preference relation is the least SPO
preference relation which contains acompositionof �0 and
�1. The composition operators used in (Chomicki 2007a)
are: union composition, prioritized composition, and Pareto
composition.

The equivalence addingoperation (Balke, Guntzer, &
Siberski 2006) is defined as follows. Let�0 be the user
preferences learned so far. Leteq be an equivalence relation
over objects. Then the preference relation�0 with added
equivalenceeq is the least preference relation which con-
tains �0 and for which the pairs of objectseq areequiva-
lent. (Balke, Guntzer, & Siberski 2006) discusses several
definitions of equivalence.

The two operations above assume that changing prefer-
ences can be done only by adding new preference or equiv-
alence information. However, these are not the only ways
people change their preferences in real life. For instance,it
is common todiscardsome preferences one used to hold if
the reason for holding those preferences is no longer valid.
That is, given the initial preference relation� and a sub-
setCON of the initial preference relation, we want the new
preference relationnot to containthe relationCON . None
of the operations above allow this kind of change.

Example 1 Assume that Mary wants to buy a car and her
preference over cars is that a good car should be as new as
possible. Such preference can be represented as the follow-
ing preference relation

o1 �1 o2 ≡ o1.y > o2.y

The information about all cars which are in stock now is



shown in the table below:

id make (m) year (y) price (p)
t1 vw 2007 15000
t2 bmw 2007 20000
t3 kia 2006 15000
t4 kia 2007 12000

Then the set of the most preferred cars according to�1

is S1 = {t1, t2, t4}.
Assume that having examined the setS1, Mary decides to

revise her preferences: among the cars made in the same
year, she prefers cheaper ones. So the new preference is
represented as�2:

o1 �2 o2 ≡ o1.y > o2.y ∨ o1.y = o2.y ∧ o1.p < o2.p

and the set of the best cars according to�2 is S2 = {t4}.
Assume that having observed the setS2, Mary under-

stands that it is too narrow. She decides that the cart1 is
not really worse thant4. She generalizes that by stating that
the cars made in2007 which cost12000 are not better than
the cars made in2007 costing15000. Sot4 is not preferred
to t1 any more, and thus the set of the best cars according to
the new preference relation should beS3 = {t1, t4}.

The problem which we face here is how to represent the
preference relation�2 with that change? Namely, we want
to find a preference relation obtained from�2 in which cer-
tain preferences do not hold. A naive solution is to rep-
resent the new preference as�3 ≡ ( �2 − CON), where
CON(o1, o2) ≡ o1.y = o2.y = 2007 ∧ o1.p = 12000 ∧
o2.p = 15000, i.e. CON is the preference we want to dis-
card. So

o1 �3 o2 ≡ (o1.y > o2.y ∨ o1.y = o2.y ∧ o1.p < o2.p)∧
¬(o1.y = o2.y = 2007 ∧ o1.p = 12000∧ o2.p = 15000).

However, �3 is not transitive since if we taket5 =
(bmw, 2007, 12000), t6 = (bmw, 2007, 14000), and t7 =
(bmw, 2007, 15000), then t5 �3 t6 and t6 �3 t7 but
t5 6�3 t7. So this change does not preserve SPO. Thus, to
make the changed preference relation transitive, some other
preferences have to be discarded in addition toCON . At the
same time, discarding too many preferences is not a good so-
lution since they may be important. So we need to discard
a minimal part of�2 which containsCON and preserves
SPO of the modified preference relation.

An SPO preference relation which is minimally different
from �2 and does not containCON is shown below:

o1 �′

3 o2 ≡ (o1.y > o2.y ∨ o1.y = o2.y ∧ o1.p < o2.p)∧
¬(o1.y = o2.y = 2007 ∧ o1.p = 12000∧

o2.p > 12000∧ o2.p ≤ 15000)

The set of the best cars according to�′

3 is S′

3 = {t1, t4}.
As we can see, the relation�′

3 is different from the naive
solution�3 in the sense that�′

3 implies that a car made in
2007 costing12000 is not better than a car made in2007
costingfrom 12000 to 1500.

The operation of discarding preferences,preference con-
traction, is the topic of this paper. As we showed in
Example 1, when discarding preferences, it is important not

to discard more preferences than it is necessary to preserve
SPO.

However, the preference relation�′

3 shown in Example 1
is not the only possible SPO minimally different from�2

which is disjoint withCON , and there exists an infinite
number of such preference relations. Each of them discards
different sets of preferences in addition toCON . At the
same time, some preferences discarded in addition toCON
may be important for the user, so he or she may want to
keep them in the contracted preference relation. This ob-
servation motivates the operation ofpreference-protecting
minimal contractionwhich we introduce in the paper. That
is, in addition to providing the preferences to be discarded,
one can also provide the preferences to beprotected from
removalin the modified preference relation.

The problem we tackle in the paper isfinding minimal
contractions of preference relations which preserve SPO.
The main results of the paper are as follows. First, we
present necessary and sufficient conditions of the minimal
and the minimal preference-protecting contractions. Sec-
ond, we provide algorithms to compute these contractions.
Finally, we show how to optimize preference query evalua-
tion with the presence of contraction.

2 Basic Notions
The preference relation framework we use in the paper is
based on (Chomicki 2003).

LetU be a universe ofobjectseach of each having a fixed
set ofattributesA = {A1, ...Am}. Let each attributeAi

be associated with adomainDi. We consider here two
kinds of infinite domains:C (uninterpreted constants) and
Q (rational numbers).

Binary relationsR ⊆ U×U considered in the paper arefi-
niteor infinite. Finite binary relations are represented as sets
of pairs of objects. The infinite binary relations we consider
here arefinitely representableas formulas. Given a binary
relationC, its formula representation is denoted asFC .

We consider two kinds of atomic formulas here:

• equality constraints: o1.Ai = o2.Ai, o1.Ai 6= o2.Ai,
o1.Ai = c, or o1.Ai 6= c, whereo1, o2 are object vari-
ables,Ai is aC -attribute, andc is an uninterpreted con-
stant;

• rational-order constraints: o1.Aiθo2.Ai or o1.Aiθc,
where θ ∈ {=, 6=, <, >,≤,≥}, o1, o2 are object vari-
ables,Ai is aQ -attribute, andc is a rational number.

An example of a relation represented using rational-order
constraints is�2 from Example 1.

Another way to represent binary relations is by using
graphnotation, as we show in the next definition.

Definition 1 Given a binary relationR ⊆ U × U and two
objectsx andy such thatxRy (xy ∈ R), xy is anR-edge
from x to y. Similarly, we can define a finiteR-path fromx
to y and an infiniteR-path fromx.

Preference relations in our framework are defined as fol-
lows.



Definition 2 A binary relation� ⊂ U × U is a preference
relation, if it is a strict partial order (SPO) relation, i.e. tran-
sitive and irreflexive. The formula representationF� of �
is called apreference formula.

An element of a preference relation is calleda preference.
We use the symbol� to refer to preference relations. The
following expressiono1 � o2 is a shortening for(o1 �
o2 ∨ o1 = o2).

3 Preference contraction
The key notion of preference contraction is thecontracting
relationwhich defines the set of pairs of objects such that the
first object in each pair should not be preferred to the second
object. We require the contracting relation to be a subset of
the preference relation to be contracted. Apart from that, we
do not impose any other restrictions on contracting relations
(i.e. they can be finite of infinite) unless stated otherwise.
Throughout the paper, all contracting relations are denoted
by CON .

Definition 3 A binary relation P− is a contraction of a
preference relation� by CON if CON ⊆ P− ⊆�, and
(� − P−) is a preference relation (i.e. an SPO). The rela-
tion (� − P−) is called thecontracted relation.

A relationP ∗ is a minimal contraction of� by CON if
P ∗ is a contraction of� by CON , and there is no other
contractionP ′ of � byCON s.t.P ′ ⊂ P ∗.

The notion of minimal contraction narrows the set of pref-
erence contractions. However, as we illustrate in Example 2,
minimal preference contraction is generally not unique for
given preference and contracting relations. In fact, the num-
ber of minimal contractions for infinite preference relations
can be infinite. This differs from minimal preference revi-
sion (Chomicki 2007a) which is uniquely defined for given
preference and revising relations.

Figure 1: Preference� .

Example 2 Take the preference relation� as shown in
Figure 1 as the set of all edges, and the contracting rela-
tion CON = {uv}. Then there are three possible min-
imal contractions of� by CON : P−

1 = {ux, uy, uv},
P−

2 = {yv, xv, uv}, andP3 = {ux, yv, uv}.

3.1 Contraction conditions
Definition 4 Given a contracting relationCON of a pref-
erence relation�, a �-path fromx to y is a CON -detour
if xy ∈ CON .

First, let us consider the problem of finding any prefer-
ence contraction, not necessary minimal. As we showed in
Example 1, the naive solution of computing the set differ-
ence of� andCON does not preserve SPO. We formulate
below a necessary and sufficient condition for a subset of a
preference relation to be its contraction.

Lemma 1 Given a preference relation (i.e. an SPO)� and
a relation P− ⊆�, (� − P−) is a preference relation
(i.e. an SPO) iff for everyxy ∈ P−, (� − P−) contains
no paths fromx to y.

Now let us consider minimal preference contractions. For
instance, take the minimal contraction from Example 2.
Note that adding any edge from a minimal contraction to the
contracted relation creates aCON -detour in the contracted
relation. However, havingCON -detours in the contracted
relation violates its transitivity by Lemma 1. This property
of minimal contractions is formally stated in Theorem 1.

Theorem 1 Let P− be a contraction of� by CON . Then
P− is a minimal contraction of � by CON iff for every
xy ∈ P−, there is aCON -detourT in � which contains
the edgexy and no other edge inT is in P−.

Or, in other words, for any edge inP−, there exists at
least oneCON -detour which is disconnected only by that
edge.

In fact, the condition from Theorem 1 can be stated in
terms of paths of length 3 due to the transitivity of�.

Corollary 1 A contractionP− of � by CON is minimal
iff the formula

∀x, y ∃u, v( FP−(x, y) ∧ FCON (u, v) ∧ F�(x, y)∧
¬FP−(u, x) ∧ ¬FP−(y, v)∧
(F�(u, x) ∨ u = x) ∧ (F�(y, v) ∨ y = v))

is valid.

Therefore, checking minimality of a contraction can be
done by performing quantifier elimination on the above for-
mula.

3.2 Construction of minimal contraction
In the algorithm computing a minimal preference contrac-
tion introduced in this section, we use the following idea.
Take Example 2 and the setP−

1 . That set was constructed as
follows: we took theCON -edgeuv and put inP−

1 all the
edges which start some path fromu to v. For the preference
relation� from Example 2,P−

1 turned out to be a minimal
contraction.

Generally, ifCON contains more than one edge, the set
consisting of all edges startingCON -detours is a contrac-
tion byCON .

Lemma 2 Let � be a preference relation andCON be a
contracting relation of�. Then

P− := { xy | ∃xv ∈ CON . x � y ∧ (y � v ∨ y = v)}

is a contraction of� byCON .

However, in the next example we show that such contrac-
tion is not always minimal.

Example 3 Take the preference relation� as shown in Fig-
ure 2(a) as the set of all edges, and the contracting relation
CON shown as the dashed edges.

Let P− be defined as in Lemma 2. Then(� − P−) is
shown in Figure 2(b) by the solid edges.P− is not mini-
mal becauseP− − {x1x2} is also a contraction of� by
CON . In fact,P− −{x1x2} is aminimalcontraction of�
byCON .



(a) Preference� (b) � −P−. (c) Minimally con-
tracted�.

Figure 2: Preference contraction

As we can see, having the edgex1x2 in P− was not neces-
sary. First, it is not aCON -edge. Second, theCON -detour
x1 � x2 � x4 is already disconnected byx2x4 ∈ P−.

As we show in Example 3, a minimal contraction can
be constructed by adding to it only the edges which start
someCON -detour if the detour is not already disconnected.
We follow this idea in Algorithm 1. The algorithm returns
a minimal preference contraction by a contracting relation
CON under the condition thatCON is a k-layer relation
defined as follows.

Definition 5 A layer indexof an edgexy ∈ CON is the
maximum length of a�-path started byy and consisting
of the end nodes ofCON -edges. A layer is the set of all
CON -edges with the samelayer index.

ThenCON is a k-layerrelation if

maxxy∈CON(layer index ofxy) ≤ k

We need thek-layer property in the algorithm to be able
to partitionCON into layers and then process the layers one
by one.

Example 4 Let a preference relation� be defined be de-
fined aso1 � o2 ≡ o1.p < o2.p., wherep is a Q -attribute.

Let also the contracting relationsCON1 andCON2 be
defined as

CON1(o1, o2) ≡ o1.p < 1 ∧ (o2.p = 2 ∨ o2.p = 3).
CON2(o1, o2) ≡ o1.p < 1 ∧ o2.p ≥ 2

ThenCON1 is ak-layerrelation since there exists only one
chaino1 � o2 of the end nodes ofCON1, whereo1.p = 2
ando2.p = 3. The length of this chain is2.

The relation CON2 is not k-layer since all �-paths
started by objects with the value ofp equal to2 are infinite.

Algorithm 1 constructs a contractionP− of CON by
picking the layers ofCON in the ascending order of their
layer index. For each layer, we add toP− a minimal set of
�-edges which contract� by theCON -edges of that layer.

Theorem 2 Algorithm 1 returns a minimal contraction of
� by CON and halts ink iterations for ak-layer relation
CON .

Algorithm 1 minContr(�, CON )

1: i = 0, P−

0 = ∅, C0 = CON
2: repeat
3: i := i + 1;
4: {Find the dest. nodes of thei-th layerCON -edges}

Li := { y | ∃x(xy ∈ Ci−1 ∧ ¬∃uv ∈ Ci−1(y � v))}
5: {Find the edges contracting thei-th layer ofCON}

Ei := {xy | ∃v ∈ Li(xv ∈ CON ∧ x � y ∧ (y �
v ∨ y = v) ∧ yv 6∈ P−

i−1 ∧ yv 6∈ CON)}

6: P−

i := P−

i−1 ∪ Ei {Add these edges toP−

i−1}
7: Ci := Ci−1 − Ei

8: until Ci = ∅
9: return P−

i

Example 5 Let a preference relation� be defined by the
solid edges in Figure 3(a). The transitive edges are skipped.
Let a contracting relationCON be defined by the dashed
edges.

(a) Preference� (b) � after Step 1 (c) � after Step 2

Figure 3: Preference contraction
Then the result of applying the first step of the algorithm

is shown in Figure 3(b). Namely,L1 = {x5}, P−

1 =
{x2x3, x2x4, x2x5}. At the second iteration (Figure 3(c)),
L2 = {x4} and P−

2 = P−

1 ∪ {x1x3, x1x4}. At the third
(and the last) iteration,L3 = ∅, i.e. all CON -edges are
already processed.

We believe that the k-layer restriction is not too severe
because in many casesCON is provided as a finite set of
object pairs. Such relations are k-layer by definition.

Thek-layerproperty ofCON is crucial for the algorithm
since it guarantees its termination. IfCON is not ak-layer
relation, then the algorithm is incomplete: it misses some
infinite descending paths, i.e. returns a minimal contraction
by asubsetof CON , or fails to terminate.

An important property of Algorithm 1 is that it works for
finite as well as finitely representable infinite preference re-
lations. Our implementation for finite relations (Appendix
10) requires timeO(|CON |2· | � |· log(|�|)). In the case
of finitely representable preference relations, the setsLi, Ei,
P−

i , andCi have to be replaced with the corresponding for-
mulasFLi

, FEi
, FP

−

i

, andFCi
; all the set operations have

to be replaced with the corresponding boolean connectives;
and quantifier elimination should be used to computeFLi

andFEi
.

We also note that any contractionP− generated by Algo-
rithm 1 has the property that any edge inP− starts aCON -
detour in�. We call such contractionsprefix contractions.

4 Preference-protecting contraction
Generally, it is not always the case that all minimal contrac-
tions are equivalent from the point of view of users. For in-
stance, a contraction may discard some preferences (in addi-
tion toCON ) which the user does not want to discard. Thus,



in addition to specifying a contracting relationCON , a sub-
set P+ of the original preference relation to be protected
in the contracted preference relation may also be specified.
Such a relation is complementary w.r.t. the contracting re-
lation: the relationCON defines the preferences to discard
whereas the relationP+ defines the preferences to protect.

Such a situation often arises in real life. For instance,
some preferencesP+ may be more important than others,
so P+ should hold after contraction. Moreover, in many
iterative preference modification frameworks,P+ is the set
of the recently introduced preferences meaning that the old
preferences are less relevant and thus may be dropped.

Definition 6 Let P+ ⊆�. ThenP ∗ is a minimal contrac-
tion of � by CON that protectsP+ if 1) P ∗ is a minimal
contraction of� byCON , and 2)P ∗ ∩ P+ = ∅.

4.1 Contraction conditions

Given any contractionP− of � by CON , by Lemma 1,
P− must contain at least one edge from everyCON -detour.
Thus, ifP+ contains a wholeCON -detour, protectingP+

in a contraction of� by CON is not possible. The same
holds for minimal contractions, too.

Theorem 3 Let CON be a k-layer contracting relation,
andP+ ⊂�. There exists a minimal contraction of� by
CON that protectsP+ iff P+

TC ∩ CON = ∅, whereP+
TC

is the transitive closure ofP+.

4.2 Construction of minimal preference-protecting
contraction

A naive way of computing a minimal preference-protecting
contraction is to find a minimal contractionP− of
(� − P+) and then addP+ to P−. However,(� − P+)
is not an SPO in general, thus preserving SPO in(P−∪P+)
becomes problematic.

The algorithm we propose here is a reduction to the min-
imal contraction algorithm shown in the previous section.
First, we find a contracting relationCON ′ such that con-
tracting � by CON ′ is equivalent to contracting� by
CON with protectedP+. After that, we use Algorithm 1
to contract� by CON ′.

The intuition beyond the algorithm is as follows. Take any
minimal prefixcontractionP− of � by CON . The prefix
property implies that ifP+-edges do not startCON -detours
in �, thenP− ∩ P+ = ∅ and thusP− is a minimal con-
traction which protectsP+. However, ifP+ contains edges
startingCON -detours, then anyP+-protecting contraction
has to contain the setQ defined in the next proposition.

Proposition 1 Take anyP+ ⊂�. Then any contraction of
� byCON protectingP+ contains the setQ

Q = {xy | ∃u : u � x � y ∧ uy ∈ CON ∧ ux ∈ P+}

We show further that ifP+ is transitive andP− a minimal
prefix contraction of� byCON ∪Q, thenP− protectsP+.
Finally, we show that suchP− is also minimal w.r.t. not only
CON ∪ Q but alsoCON .

Algorithm 2 minContrProt(�, CON , P+)

Require: P+ is transitive
1: Q = {xy | ∃u : u � x � y ∧ uy ∈ CON ∧ ux ∈ P+}
2: CON ′ = CON ∪ Q
3: P− = minContr(�, CON ′)
4: return P−

Theorem 4 If CON is a k-layercontracting relation, and
P+ is transitive, then Algorithm 2 terminates and returns
a contraction of� by CON which 1) is minimal, and 2)
protectsP+.

Note that we use the functionminContr in Algorithm 2
becauseCON ′ is a k-layer relation. It is explained by the
fact thatCON is a k-layer relation and the set of the end
nodes ofCON ′ edges coincides with the corresponding set
for CON by the construction ofQ.

As in the case of Algorithm 1, Algorithm 2 can be used
to find contractions of finite and finitely representable pref-
erence relations.

5 Query evaluation in database framework
Dealing with preferences, the two common tasks are
1) given two objects, find the more preferred one, and 2) find
the most preferred objects in a set. The former problem is
solved easily given the preference relation. To solve the later
problem, thewinnow operatoris proposed in (Chomicki
2003). It picks from a given set of objects the most pre-
ferred objects according to a given preference relation. A
number of optimization methods to evaluate queries in-
volving winnow have been introduced (Chomicki 2007b;
Hafenrichter & Kießling 2005).

Definition 7 Let U be a universe of objects each of each
having the set of attributesA. Let � be a preference relation
overU . Then thewinnow operatoris written asw�(U), and
for every finite subsetr of U :

w�(r) = {t ∈ r | ¬∃t′ ∈ r.t′ � t}

In this section, we show some new techniques which can
be used to optimize evaluation of the winnow operator under
contracted preferences. The results below are representedin
terms of the standardrelational algebraoperatorselection
denoted asσF (r). It picks from the object setr all the ob-
jects for which the conditionF holds. The conditionF is a
boolean expression involving comparisons between attribute
names and constants.

In user-guided preference modification frameworks
(Chomicki 2007a; Balke, Guntzer, & Siberski 2006), it is as-
sumed that users alter their preferences after examining sets
of the most preferred objects returned by winnow. Thus,
if preference contraction is incorporated into such frame-
works, there is a need to compute winnow under contracted
preference relations. Here we show how the evaluation of
winnow can be optimized in such cases.

Let � be a preference relation,CON be a contracting re-
lation of �, and�′ be a contraction of� by CON . Denote
the set of the starting and the ending objects ofCON -edges
asS(CON ) andE(CON ) correspondingly.



S(CON ) = {x | ∃xy ∈ CON}
E(CON ) = {y | ∃xy ∈ CON}

Similarly, define the setsS(P−) andE(P−). Let us also
define the setM(CON ) of the objects which participate in
CON -detours in�

M(CON ) = {y | ∃x, y, z . x � y ∧ xz ∈ CON∧
(y � z ∨ y = z)}.

Assume we also know quantifier-free formulasFS(P−),
FE(P−), FM(CON), andFS(CON) representing these sets.
Then the following holds.

Proposition 2

1. w�(r) ⊆ w�′(r)

2. If σF
S(P−)

(w�(r)) = ∅, thenw�(r) = w�′(r).

3. w�′(r) = w�′(w�(r) ∪ σF
E(P−)

(r))

4. If P− is a minimal contraction, then
w�′(r) = w�′(w�(r) ∪ σFM(CON)

(r))

5. If P− is a prefix contraction, then
σF

S(P−)
(r) = σFS(CON)

(r)

According to Proposition 2, the result of winnow under
a contracted preference is always a superset of the result of
winnow under the original preference. This is caused by the
fact that if we reduce the set of preference edges, the set of
undominated objects can only grow.

In the second case, the contraction does not change the
result of winnow. Running the winnow query is generally
expensive, thus one can first evaluate the specified selection
query over the computed result of the original winnow. If
the result is empty, then computing the winnow under the
contracted preference relation is not needed. The reasoning
here is as follows. Take the preference relation�. Then for
any dominated objecto ∈ r there is an objecto′ ∈ w�(r)
dominatingo. However, ifo is in w�′(r) theno′ does not
dominateo in �′. Thus some�-edges going fromw�(r)
are lost in�′.

The third statement of the proposition is useful when the
setr is large and thus runningw�′ over the whole setr is
expensive. Instead, one can computeσF

E(P −)
(r) and then

evaluatew�′ over (σF
E(P −)

(r) ∪ w�(r)) (assuming that
w�(r) is already known). However, if the size of the for-
mula FE(P−) is too large, then runningσF

E(P−)
(r) may

be also expensive. In this case, one can use a superset of
σF

E(P −)
(r), for exampleσFM(CON)

(r).
It may be the case that the size ofFS(P−) is large and

thus evaluation ofσF
S(P−)

(r) is expensive. Then, ifP− is a
prefix contraction, one can useFS(CON) instead ofFS(P−).

6 Related and future work
A general framework of preference change is proposed in
(Hansson 1995). Preference change there is considered from
the point of view of belief change theory. In addition to con-
traction, it introduces the operators of revision, domain ex-
pansion and reduction. Preference contraction is defined via
preference revision. Similarly to our definition, the prefer-
ence contraction from (Hansson 1995) preserves rationality

postulates (e.g. transitivity) and performs minimal change
of preferences. However, due to the generality of the frame-
work, the postulate set and the measure of minimality are not
fixed. (Hansson 1995) defines contraction only for finite do-
mains and does not provide any methods of computing con-
tractions. There is also no notion of preference-protecting
contraction.

(Dong et al. 1999) proposes algorithms of incremental
maintenance of the transitive closure of graphs using rela-
tional algebra. The graph modification operations are edge
insertion and deletion. Transitive graphs in (Donget al.
1999) consist of two kinds of edges: the edges of the original
graph and the edges induced by its transitive closure. When
an edgexy of the original graph is contracted, the algorithm
also deletes all the transitive edgesuv such that all the paths
from u to v in the original graph go throughxy. As a result,
such contraction is not minimal according to our definition
of minimality. Moreover, (Donget al. 1999) considers only
finite graphs, whereas our algorithms can work with infinite
relations.

Other preference modification operations are proposed in
(Chomicki 2007a) and (Balke, Guntzer, & Siberski 2006).
However, they do not address preference contraction.

In this paper, we consider only one kind of contraction
constraints - preference protection. However, other con-
straints are also feasible. For instance, one could require
that if a contraction protects a preference relationP+

1 then it
should protectP+

2 . Another direction is to design contrac-
tion algorithms which are not limited to k-layer contracting
relations. Since other preference models (e.g. CP-nets) can
be represented in the binary relation framework, an interest-
ing direction is to apply our results in those frameworks.

Appendix 1. Proof of Lemma 1

Lemma 1. Given a preference relation (i.e. an SPO)�
and a relationP− ⊆�, (� − P−) is a preference relation
(i.e. an SPO) iff for everyxy ∈ P−, (� − P−) contains no
paths fromx to y.

Proof
⇐ Prove that if for allxy ∈ P−, (� −P−) contains no
paths of fromx to y, then(� −P−) is an SPO. Clearly,
since� is irreflexive,(� −P−) is irreflexive, too. Prove
that(� −P−) is transitive. If(� −P−) is not transitive,
then there are exist such objectsx, y, z thatxz 6∈ (� −P−)
butxy, yz ∈ (� −P−). Thusxz ∈ P− and there is a path
in (� −P−) from x to z consisting of two edgesxy and
yz. However, this contradicts to the assumption that there is
no path in(� −P−) from x to z for everyxz ∈ P−.
⇒ Prove that if(� −P−) is an SPO, then(� −P−)

contains no paths fromx to y for everyxy ∈ P−. Clearly,
if xy 6∈ (� −P−) but there is a path fromx to y in (�
−P−), then(� −P−) is not transitive.

Appendix 2. Proof of Theorem 1

Before going to the proof of Theorem 1, let us define the set
Φ which we use in the proof of the theorem.



Definition 8 Let CON be a contracting relation of a pref-
erence relation�, andP− be a contraction of� byCON .
Fix any edgexy ∈ P− − CON . Let

• Φ0(xy) = {xy};
• Φi(xy)= {uivi ∈ P−|∃ui−1vi−1 ∈ Φi−1(xy)

(ui = ui−1 ∧ vi−1 � vi∧ vi−1vi 6∈ P−
∨

ui � ui−1 ∧ vi−1 = vi∧ uiui−1 6∈ P−)};

ThenΦ(xy) is defined as

Φ(xy) =

∞⋃

i=0

Φi(xy).

Figure 4:Φ(xy) for Example 6.

Example 6 Let a preference relation� be the set of all
edges in Figure 4 andP− be defined by the dashed edges.
Let us constructΦ(xy) (assuming thatxy is not an edge of
the contracting relation).

• Φ0(xy) = {xy};
• Φ1(xy) = {xv, xz};
• Φ2(xy) = {uv, uz};

SoΦ(xy) = {xy, xv, xz, uv, uz}.

Some properties of the setΦ are shown in Lemma 3 .

Lemma 3 LetP− be a contraction of a preference relation
� by a contracting relationCON . Then for everyxy ∈
(P− − CON), Φ(xy) has the following properties:

1. for all uv ∈ Φ(xy), u � x andy � v;
2. for all uv ∈ Φ(xy), ux, yv 6∈ P−;
3. if (Φ(xy)∩CON) = ∅, then(P−−Φ(xy)) is a contrac-

tion of� byCON .

Proof
Properties 1 and 2. We prove the first two properties by
induction oni.

Base case.For everyuv ∈ Φ0(xy) the properties hold by
the construction ofΦ0.

Inductive case.Let the properties hold forΦi(xy), i.e.

∀uivi ∈ Φi(xy) → ui � x ∧ y � vi ∧ uix, yvi 6∈ P− (1)

Prove that these properties hold for everyui+1vi+1 ∈
Φi+1(xy). Sinceui+1vi+1 ∈ Φi+1(xy), the following is
true

∃uivi ∈Φi(xy)(

ui+1 = ui ∧ vi � vi+1 ∧ vivi+1 6∈ P−∨

ui+1 � ui ∧ vi = vi+1 ∧ ui+1ui 6∈ P−) (2)

Prove thatui+1 � x andux 6∈ P− (the case ofyvi+1 is
similar). Show that these statements hold for each disjunct
from (2).

Case 1. Take the first disjunct from (2), i.e.

ui+1 = ui ∧ vi � vi+1 ∧ vivi+1 6∈ P− (3)

Then (1) and (3) implyui+1 � x andui+1x 6∈ P−.
Case 2. Take the second disjunct from (2). So

ui+1 � ui ∧ vi = vi+1 ∧ ui+1ui 6∈ P− (4)

First, (1) and (4) implyui+1 � ui andui � x. Thus
ui+1 � x by transitivity of�. Second, (1) and (4) imply
uix 6∈ P− andui+1ui 6∈ P−. Thus,ui+1x 6∈ P− by transi-
tivity of (� −P−).

Property 3.Show that ifΦ(xy)∩CON = ∅, then(P−−
Φ(xy)) is a contraction of� by CON .

First, (Φ(xy) ∩ CON) = ∅ andCON ⊆ P− imply
CON ∈ (P− − Φ(xy)). Hence, we only need to prove that
(� −(P− − Φ(xy))) is transitive (its irreflexivity follows
from the irreflexivity of�).

Intransitivity of (� −(P− − Φ(xy))) means

∃u, v, z(uz 6∈ (� −(P− − Φ(xy)))∧

uv, vz ∈ (� −(P− − Φ(xy)))) (5)

(5) implies uz 6∈ (� −P−). Thus, by transitivity of
(� −P−), we get

uv 6∈ (� −P−) ∨ vz 6∈ (� −P−). (6)

(6) and (5) imply

uv ∈ Φ(xy) ∨ vz ∈ Φ(xy) (7)

By definition ofΦ(xy), it is not possible that bothuv andvz
are inΦ(xy). W.l.o.g. assume that

uv ∈ Φ(xy) ∧ vz 6∈ Φ(xy) (8)

From (8) and (5), it follows that

uv ∈ Φ(xy) ∧ vz 6∈ P− (9)

However, (9) impliesuz ∈ Φ(xy) by definition ofΦ(xy).
Thusuz ∈ (� −(P− − Φ(xy))) which contradicts to (5).

Theorem 1. Let P− be a contraction of� by CON .
ThenP− is a minimal contraction of � by CON iff for
everyxy ∈ P−, there is aCON -detourT in � which con-
tains the edgexy and no other edge inT is in P−.

Or, in other words, for any edge inP−, there exists at
least oneCON -detour which is disconnected only by that
edge.

Proof
⇒ First, prove that ifP− is a minimal contraction, then for
everyxy ∈ P−, there exists aCON -detourT disconnected
only byxy, i.e.

∀xy ∈ P−(∃CON -detourT (
xy ∈ T ∧ ∀uv(uv 6= xy ∧ uv ∈ T → uv 6∈ P−)))

Assume it is not the case. Then

∃xy ∈ P−(∀CON -detourT (

xy 6∈ T ∨ ∃uv(uv 6= xy ∧ uv ∈ T ∧ uv ∈ P−))) (1)



Consider the first disjunct of (1). That is, prove that for
any xy ∈ P−, there exists aCON -detour whichxy be-
longs to. If for somexy ∈ P−, no such detour exists, then
Φ(xy) ∩ CON = ∅ by the construction ofΦ(xy). Hence
by Lemma 3,(P−−Φ(xy)) is a contraction of� by CON .
This contradicts to the assumption thatP− is aminimalcon-
traction.

Consider the second disjunct of (1). Similarly to
what we did above, let us show thatΦ(xy) ∩ CON = ∅.
If ∃uv ∈ Φ(xy) ∩ CON , then by Lemma 3,
u � x ∧ y � v ∧ ux, yv 6∈ P−, i.e. there’s aCON -detour
from u to v where onlyxy is in P−. However, we assumed
that such a detour does not exists. ThusCON ∩Φ(xy) = 0.
Then by Lemma 3,(P− − Φ(xy)) is a contraction of� by
CON . This contradicts to the assumption thatP− is amin-
imal contraction.

⇐ Let for every edge inP−, there exists at least one
CON -detour disconnected only by that edge. In this case,
if we remove some edgexy from the contractionP−, then
there will be aCON -detour which is not disconnected and
thus by Lemma 1,(� −P− ∪ {xy}) is not a contraction of
� by CON . Hence,P− is a minimal contraction.

Appendix 3. Proof of Corollary 1
Corollary 1. A contractionP− of � by CON is minimal
iff the formula

∀x, y ∃u, v(FP−(x, y) ∧ FCON (u, v) ∧ F�(x, y)∧

¬FP−(u, x) ∧ ¬FP−(y, v)∧

(F�(u, x) ∨ u = x) ∧ (F�(y, v) ∨ y = v)) (1)

is valid.
Proof
Prove that the validity of (1) is equivalent to the necessary
and sufficient condition from Theorem 1. Namely, prove
that (1) is valid ifffor every edgexy ∈ P−, there is aCON -
detour disconnected only byxy.
⇐ (1) implies that for allxy, there is aCON -detour con-

sisting of one (ifu = x andy = v) up to three (ifu 6= x and
y 6= v) edges going fromu to v which is disconnected only
by xy.
⇒ Assume that for some edgexy ∈ P−, there is aCON -

detour fromu to v

u � ... � x � y � ... � v

disconnected only byxy. The detour fromu to x is not
disconnected, and thus, by transitivity of(� −P−), ux ∈
(� −P−) unlessu = x. Similarly, eitheryv ∈ (� −P−)
or y = v. Hence, there is aCON -detour of at most three
edges disconnected only byxy.

Appendix 4. Proof of Lemma 2
Lemma 2. Let � be a preference relation andCON be a
contracting relation of�. Then

P− := { xy | ∃xv ∈ CON . x � y ∧ (y � v ∨ y = v)}

is a contraction of� byCON .

Proof
To prove thatP− is a contraction of� by CON , it suffices
to show thatCON ⊆ P− and(� −P−) is transitive. First,

(� −P−) is transitive by Lemma 1, since for every edge
xy ∈ P−, the starting of each detour fromx to y is in P−.
Second,P− containsCON by construction.

Appendix 5. Proof of Theorem 2
Before we go into the details of the proof, let us define the
relationsaboveandbelowover edges.

Definition 9 Given a preference relation� and two edges
xy, x′y′ of�, the edgexy is above(or below) the edgex′y′

if y � y′ (or y′ � y, correspondingly).

The next notion,forks, is used to simplify the description
of the theorem proof.

Definition 10 Let � be a preference relation andP− be a
subset of�. Then a triplexyz is a fork in � −P− if 1)
x � y � z, and 2)xz, xy ∈ P− ∧ yz 6∈ P− (or, xz, yz ∈
P− ∧ xy 6∈ P−).

(a) Fork xyz, the
shorter edgexy,
the longer edgexz.

(b) Fork xyz, the
shorter edge yz,
the longer edgexz.

Figure 5: Forks

The edgexy (or, yz respectively) is calledthe shorter edge
of the forkandxz is calledthe longer edge of the fork.

To keep the notation simple, let us denote the relation re-
turned by Algorithm 1 asP−.

Lemma 4 Algorithm 1 returns a contraction of� byCON
and terminates ink iterations for ak-layerrelationCON .

Proof
1) Termination. Prove that the algorithm stops ink itera-
tions. Note that the initial value ofC (i.e. C0) is equal to
CON . In each iteration,Ei is constructed as a superset of
the set of the bottom most edges inCi−1. After that, the set
Ci−1 is reduced byEi. SinceC0 hask layers, the function
will terminate ink iterations when all the layers ofCON
are exhausted.

2) Contraction. Prove thatP− is a contraction of� by
CON , i.e. a)CON ⊆ P−

k and b)(� −P−

k ) is an SPO.
a)Ei calculated at every iteration of the algorithm is a su-

perset of theCON -edges of layeri. HenceP−

i is a superset
of theCON -edges of the layers1 throughi. Therefore,P−

is a superset ofCON .
b) Prove that(� −P−

k ) is an SPO. Since� is irreflexive,
(� −P−

k ) is irreflexive, too. So it suffices to show that
(� −P−

k ) is transitive. Prove that the relation(� −P−

i ) is
transitive for everyi from 0 to k. We do it by induction oni.

1) Base step.(� −P−

0 ) =� is transitive since� is an
SPO relation.



2) Inductive step. Let(� −P−

i ) be transitive. Prove that
(� −P−

i+1) is transitive, too. For the sake of contradiction,
assume that(� −P−

i+1) is not transitive. So there exist
x, y, z such that

xy ∈ P−

i+1 = P−

i ∪ Ei+1 (1)

but
xz, zy 6∈ P−

i+1 = P−

i ∪ Ei+1 (2)

(1) implies that eitherxy ∈ P−

i or xy ∈ Ei+1. How-
ever,xy ∈ P−

i along with (1) implies that(� −P−

i ) is not
transitive which constradicts to the assumption. Thus

xy ∈ Ei+1 (3)

Therefore, by the definition ofEi+1, the following is true

∃v ∈ Li+1(xv ∈ CON∧x � y � v∧

yv 6∈ P−

i ∧ yv 6∈ CON)} (4)

So we have theCON -edgexv with v ∈ Li+1 and
x � z � v by transitivity of�. From (2), we know that
xz 6∈ Ei+1. It implies (by the definition ofEi+1) that either
1) zv ∈ P−

i or 2)zv ∈ CON .

Figure 6: Transitivity. Inductive case. Dashed edges are in
(Ei+1 ∪ P−

i ). Solid edges are in(� −(Ei+1 ∪ P−

i )).

In case 1) we havezv ∈ P−

i , zy 6∈ P−

i , yv 6∈ P−

i . We
also know from (4) thaty = v or y � v. However,y can
not be equal tov since thenzy ∈ P−

i andzy 6∈ P−

i . At the
same time,y � v implies that(� −P−

i ) is not transitive.
Contradiction.

Consider case 2), i.e.zv ∈ CON . Sincev ∈ Li+1, by
the definition ofEi+1, we have three choices: (i)zy ∈ Ei+1,
(ii) yv ∈ CON , and (iii) yv ∈ P−

i by the construction of
Ei+1. The choice (i) contradicts to (2). The choices (ii) and
(iii) contradict to (4). Contradiction.

Lemma 5 Take thei-th iteration of Algorithm 1 for anyi.
Then for any non-CON edgexy of Ei, there existv ∈ Li

such thatxyv is a fork in (� −P−) with the shorter edge
xy.

Proof
Take anyxy ∈ Ei − CON . Then by the definition ofEi,

∃v ∈ Li ∧ xv ∈ CON∧x � y � v∧

yv 6∈ P−

i−1 ∧ yv 6∈ CON (1)

By construction ofP−, Ei ⊆ P−. Thus

xy ∈ P−. (2)

By Lemma 4,CON ⊆ P−. Thus

xv ∈ P−. (3)

Moreover,v = y would mean thatxy is aCON -edge which
contradicts to the assumption. From that and (1), we get

y � v. (4)

Assumexyv is not a fork in(� −P−). Then (2), (3), and
(4) imply thatyv must be inP− (otherwisexyv is a fork).
Thus there existsj such thati ≤ j andyv ∈ Ej . The next
expression shows what it means foryv to be inEj

∃u ∈ Lj(yu ∈ CON∧y � v � u∧

vu 6∈ P−

j−1 ∧ vu 6∈ CON) (5)

As a result,yv 6∈ CON (see (1)) andyu ∈ CON (see
(5)) imply that v 6= u and thusv � u. However, since
u ∈ Lj , v ∈ Li, andj ≥ i, v � u is not possible by the
construction ofLi, Lj.

Theorem 2.Algorithm 1 returns a minimal contraction of
� by CON and halts ink iterations for ak-layer relation
CON .
Proof
1) Termination. See Lemma 4.
2) Contraction. See Lemma 4.
3) Minimality. Prove thatP−

k is aminimalcontraction of�
by CON . By Lemma 5, every non-CON edgexy in P−

is the shorter edge in a forkxyv in (� −P−) wherexv is a
CON -edge. Thus, the two-edgeCON -detour consisting of
the edgesxy andyv is disconnected only byxy. Hence, by
Theorem 1,P− is a minimal contraction.

Appendix 6. Proof of Theorem 3
Theorem 3. Let CON be a k-layer contracting relation,
andP+ ⊂�. There exists a minimal contraction of� by
CON that protectsP+ iff P+

TC ∩ CON = ∅, whereP+
TC

is the transitive closure ofP+.
Proof
⇒ Prove that ifP− is a minimal contraction of� by CON

protectingP+, thenP+
TC ∩ CON = ∅. If ∃xy ∈ P+

TC ∩
CON , then there is aCON -detour fromx to y which is
entirely inP+, and no edge from this detour is inP−. How-
ever, the edgexy must be inP−, sinceP− is a contraction
by CON . Thus by Lemma 1,(� −P−) is not transitive,
andP− is not a contraction of� by CON .
⇐ If P+

TC ∩ CON = ∅, then Algorithm 2 can be used to
compute a minimal contraction of� by CON protecting
P+.

Appendix 7. Proof of Proposition 1
Proposition 1. Take anyP+ ⊂�. Then any contraction of
� byCON protectingP+ contains the setQ

Q = {xy | ∃u : u � x � y ∧ uy ∈ CON ∧ ux ∈ P+}

Proof
Take any contractionP− of � by CON protectingP+. Let
xy ∈ Q, i.e.

∃u : u � x � y ∧ uy ∈ CON ∧ ux ∈ P+.

Thenuy ∈ CON impliesuy ∈ P−. SinceP− protects
P+, ux 6∈ P−. Thus if xy 6∈ P−, then(� −P−) is not
transitive and therefore not a contraction of�. Hence,xy
must be a member ofP−.



Appendix 8. Proof of Theorem 4
In Theorem 3 we showed that

P+
TC ∩ CON = ∅ (A)

is required to be able to construct a minimal contraction of
� byCON with protectedP+. So in the following theorem,
we assume that the above condition holds.

Theorem 4. If CON is a k-layer contracting relation,
and P+ is transitive, then Algorithm 2 terminates and re-
turns a contraction of� byCON which 1) is minimal, and
2) protectsP+.
Proof
1. Termination. Prove that the functionminContrProt

terminates. Note that by the construction ofCON ′, if we
take any edgexy ∈ CON ′, there will be an edgex′y ∈
CON . Thus, ifCON is a k-layer relation,CON ′ is k-
layer, too, and by Theorem 2,minContr(�, CON ′)
terminates. Hence, the functionminContrProt termi-
nates, too.

2. Contraction & P+ protection. By Theorem 2,
minContr(�, CON ′) returns a contractionP− of �
by CON ′. Clearly, sinceCON ⊆ CON ′, P− is also a
contraction of� by CON .
Now prove thatP− protectsP+, i.e. thatP+ ∩ P− = ∅.
Assume

∃xy ∈ P− ∩ P+. (1)

SinceP− is returned byminContr, there existsi such
thatxy ∈ Ei, i.e.

∃v ∈ Li(xv ∈ CON ′ ∧ x � y ∧ (y � v ∨ y = v)

∧ yv 6∈ P−

i−1 ∧ yv 6∈ CON ′)} (2)

(a) Case 1. (b) Case 2.

Figure 7: Proof ofP+ preservation.

(2) implies these two cases: 1)xv ∈ CON , and 2)xv ∈
Q.
Case 1.

xv ∈ CON. (3)

Theny = v along with (3) and (1) violate (A). Therefore,
(2) implies

y � v. (4)

Next, xv ∈ CON andxy ∈ P+ imply yv ∈ Q by the
definition ofQ. Thusyv ∈ CON ′ = CON ∪ Q. How-
ever, this contradicts to (1).
Case 2.

xv ∈ Q. (5)

Then, according to the expression forQ, we get

∃u : u � x � v ∧ uv ∈ CON ∧ ux ∈ P+ (6)

Fromux ∈ P+ andxy ∈ P+ we get thatuy ∈ P+ by
transitivity ofP+.

Fromuv ∈ CON anduy ∈ P+ it follows thatyv ∈ Q
by definition ofQ. So we get the same contradiction as in
case 1.

3. Minimality. Use Theorem 1 to prove thatP− is a mini-
mal contraction of� by CON . We need to show that for
everyxy ∈ P− there’s aCON -detour which is discon-
nected only byxy.
By Theorem 2,P− is a minimal contraction of� by
CON ′. Thus, by Theorem 1, there is aCON ′-edgeuv
such that a pathT from u to v is disconnected only byxy.
We have two choices: 1)uv ∈ CON , and 2)uv ∈ Q.
In the first case, the same pathT will satisfy the minimal-
ity condition of Theorem 1.
In the second case,uv ∈ Q implies

∃z : z � u � v ∧ zv ∈ CON ∧ zu ∈ P+

Take the pathT ′ which consists of the edgezu and the
pathT appended to it. This pathT ′ is a CON -detour
going fromz to v and is disconnected by onlyxy. Hence,
T ′ satisfies the minimality condition of Theorem 1.

Appendix 9. Proof of Proposition 2
Proposition 2

1. w�(r) ⊆ w�′(r)

2. If σF
S(P−)

(w�(r)) = ∅, thenw�(r) = w�′(r).

3. w�′(r) = w�′(w�(r) ∪ σF
E(P −)

(r))

4. If P− is a minimal contraction, then
w�′(r) = w�′(w�(r) ∪ σFM(CON)

(r))

5. If P− is a prefix contraction, then
σF

S(P−)
(r) = σFS(CON)

(r)

Proof
1. By definition,w�(r) contains the set of the undominated

objects w.r.t the preference relation�. Thus,�′⊂� im-
plies that if an objecto was undominated w.r.t�, it will be
undominated w.r.t�′, too. However, ifo was dominated
w.r.t. �, it will become undominated w.r.t.�′ if all the �-
edges going too were contracted. Thusw�(r) ⊆ w�′(r).

2. Assume that there is an objecto such that

o ∈ w�′(r) − w�(r). (1)

Sinceo 6∈ w�(r), there is an objecto′ such that

o′ ∈ w�(r) ∧ o � o. (2)

However, sinceo ∈ w�′(r), the objecto′ does not domi-
nateo w.r.t�′. Thus,

o′o ∈ P− (3)

and o′ ∈ S(P−). Since, o′ ∈ w�(r), we geto′ ∈
σF

S(P−)
(w�(r)), i.e. σF

S(P−)
(w�(r)) 6= ∅.

3. It is clear that for any subsetr′ of r which contains
w�′(r), we havew�′(r) = w�′(r′). That is,

∀r′(w�′(r) ⊆ r′ ⊆ r → w�′(r) = w�(r′)) (4)

Therefore, to prove (5)

w�′(r) = w�′(w�(r) ∪ σF
E(P −)

(r)) (5)



we need to show that

w�′(r) ⊆ w�(r) ∪ σF
E(P−)

(r)

or
w�′(r) − w�(r) ⊆ σF

E(P−)
(r). (6)

Take the objectso ando′ as shown in (1) and (2). Then (3)
implieso ∈ E(P−). Moreover, (1) implieso ∈ r. Thus,
o ∈ σF

E(P−)
(r).

4. From Theorem 1, it follows that the statement (7) is true.

σF
E(P−)

(r) ⊆ σFM(CON)
(r). (7)

Moreover, (7) implies (8)

w�(r) ∪ σF
E(P −)

(r) ⊆ w�(r) ∪ σF
M(P−)

(r). (8)

(8), (5), and (4) imply

w�′(r) = w�′(w�(r) ∪ σFM(CON)
(r))

5. Follows from the definition ofprefixcontractions.

Appendix 10. Finite case implementation of
Algorithm 1
Here we present an implementation of Algorithm 1 for
the finite case of�(X,Y) and CON(X,Y). It con-
sists of three functions:init, getLayerOrder, and
minContrFinite. It constructs a tableR(X,Y,F)
which is a copy of� (X,Y) with the flagF set to1 if the
corresponding tuple is a member of the minimal contraction
returned by the algorithm.

The functioninit initializes the algorithm by creating
the tableR, setting the flagF to 1 for all theCON-edges of
R, and sortingR andCON.

Algorithm 3 init( �, CON)

1: Create a tableR(X,Y,F) and copy�(X,Y)
to it. For each row ofR, setF to 0.

2: SortR by the pair(X,Y).
3: SortCON by the pair(X,Y).
4: for all t in CON do
5: t’ := find a tuple inR with X = t.X andY = t.Y
6: if t’ existsthen
7: t’.F := 1
8: end if
9: end for

10: return R, CON

The functiongetLayerOrder ordersCON-edges by
layer index. Namely, it creates a listL of the destination-
nodes ofCON ordered by the layer index of the correspond-
ing CON-edge. It is done by copying�(X,Y) to in the table
T(X,Y,C) and setting the flagC of eachT-tuple to1 if
the corresponding tuple represents an edge going from one
CON -edge destination to another. After that, we pick all
theCON -edge destinations in the order of their layer index,
and store them in the listL.

Algorithm 4 getLayerOrder(R, CON)

1: YCON := the list of allY-values ofCON
2: SortE and eliminate duplicates
3: Create a tableT(X,Y,C) and copyR(X,Y) to it. Set

the value ofC of each row to0.
4: for all t in T do
5: if t.X in E andt.Y in YCON then
6: t.C := 1
7: end if
8: end for
9: L := empty list

10: repeat
11: for all b in L do
12: Nb := # of tuples inT with X = b
13: if Nb = 0 then
14: Pushb to the end ofL
15: Delete all the tuples fromT with Y = b
16: Deleteb fromYCON

17: end if
18: end for
19: until |E| = ∅
20: return L

Algorithm 5 minContrFinite(�, CON)

Require: � is transitive,CON ∈�
1: R, CON := init(�, CON)
2: L := getLayerOrder(R, CON)
3: for all e in L do
4: for all c in CON do
5: if c.Y = e then
6: for all t in R do
7: if t.X = c.X andt.F = 0 then
8: if exists a tupleo in R with o.X = t.Y,

o.Y = e, ando.F = 0 then
9: t.F := 1

10: end if
11: end if
12: end for
13: end if
14: end for
15: end for
16: return all tuplest in R with t.F = 1

The functionminContrFinite is the main function
of the algorithm. First, it performs some preparations by
callinginit andorderNodesByLayerIndex. Then it
picks every elemente of L, and for everyCON-edge which
ends ine, it checks if there is a two-edgeCON-detour which
is not disconnected yet. If it exists, the starting edge of the
detour is added to the contraction (i.e. the flagF of the cor-
respondingR-edge is set to1).

The algorithm runtime analysis gives the follow-
ing results. 1) the functioninit requires time
O(|�| · log|�|+ |CON | · (log|�| + log|CON |)). 2) the
functiongetLayerOrder requires timeO(|CON |2 ·|�|).
Finally, the loop in lines 3-15 ofminContrFinite re-
quires timeO(|CON |2 · |�| · log|�|). Thus, the total run
time isO(|CON |2 · |�| · log|�|).
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