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Abstract

Changing preferences is very common in real life. The ex-
pressive power of the operations of preference change intro
duced so far in the literature is limited aoldingnew informa-

tion about preference and equivalence. We discuss the oper-
ation ofdiscardingpreferences - preference contraction. We
argue that the property afiinimalityand the preservation of
strict partial ordersare crucial for contractions. Contractions
can be further constrained by specifying which preferences
should notbe contracted. We provide algorithms for comput-
ing minimal and minimal preference-protecting contrattio
We also show some preference query optimization techniques
which can be used in the presence of contraction.

Content areas: Knowledge Representation, Knowledge
Engineering, Databases

1 Introduction

change and elicitation of the change itself, it is important
to preserve the correctness of preference model in the pres-
ence of change. In the binary relation framework, a natural
correctness criterion is the preservation of SPO propeofie
preference relations.

Two SPO-preserving operations of preference change in
the binary relation framework have been proposed in the lit-
erature:preference revisiofChomicki 2007a) anequiva-
lence addingBalke, Guntzer, & Siberski 2006). Informally,
preference revision is defined as follows. Leg be the ini-
tial preference relation which generally represents trex us
preferences learned so far. Let; be arevising relation
consisting of new preferences generally corresponding to
the information learned from the user or provided by her di-
rectly. Then the revised preference relation is the lea§ SP
preference relation which containgsampositiorof >~ and
>1. The composition operators used in (Chomicki 2007a)
are: union composition, prioritized composition, and Rare

A number of preference representation and reasoning frame- Composition.

works have been developed. Among the most popular ones

are CP-nets(Boultilier et al. 2004) and théinary relation
framework (Chomicki 2003; Kiel3ling 2002). In the CP-

The equivalence addingperation (Balke, Guntzer, &
Siberski 2006) is defined as follows. Let, be the user
preferences learned so far. lagtbe an equivalence relation

net framework, preferences are represented as graphs. ThiOVer objects. Then the preference relatien with added

framework is simple and intuitive, but the expressive power
of the framework is limited. A number of extensions to that
model have been introduced (Brafman, Domshlak, & Shi-
mony 2002; Wilson 2004).

In the binary relationframework, preferences are repre-
sented as binary relations over objects. Preferencessn thi
framework arestrict partial orders (SPQ)transitive and ir-
reflexive binary relations. The SPO properties are known
to capture the rationality of preferences (Fishburn 1970).
This framework can deal with finite as well as infinite pref-
erence relations, the latter represented using fimieder-
ence formulasConnections between these two frameworks
have been recently established in (Endres & Kiel3ling 2006;
Mindolin & Chomicki 2007), where it was shown how some

equivalenceeq is the least preference relation which con-
tains > and for which the pairs of objects; areequiva-
lent (Balke, Guntzer, & Siberski 2006) discusses several
definitions of equivalence.

The two operations above assume that changing prefer-
ences can be done only by adding new preference or equiv-
alence information. However, these are not the only ways
people change their preferences in real life. For instaihce,
is common tadiscardsome preferences one used to hold if
the reason for holding those preferences is no longer valid.
That is, given the initial preference relation and a sub-
setCON of the initial preference relation, we want the new
preference relationot to containthe relationCON. None
of the operations above allow this kind of change.

variants of CP-nets can be represented as preference formu-Example 1 Assume that Mary wants to buy a car and her

las. The binary relation framework is the focus of our paper.
Working with preferences in any framework, it is naive

preference over cars is that a good car should be as new as
possible. Such preference can be represented as the follow-

to expect that they never change. Preferences can changeng preference relation

over time: if one likes something now, it does not mean
one will still like it in the future. It was shown in (Doyle

01 >1 02 =01.Y > 02.Y

2004) that along with the discovery of sources of preference The information about all cars which are in stock now is



shown in the table below: to discard more preferences than it is necessary to preserve

SPO.
id | make (m)] year (y) | price (p) However, the preference relatior; shown in Example 1
t1 | vw 2007 15000 is not the only possible SPO minimally different fross
t2 | bmw 2007 | 20000 which is disjoint with CON, and there exists an infinite
ts | kia 2006 15000 number of such preference relations. Each of them discards
ta | kia 2007 | 12000 different sets of preferences in addition@ON. At the
i same time, some preferences discarded in additiar eV
_ Then the set of the most preferred cars according-to may be important for the user, so he or she may want to
is 51 = {t1, t2,ta}. keep them in the contracted preference relation. This ob-

Assume that having examined the.SgtMary decidesto  servation motivates the operation pfeference-protecting
revise her preferences: among the cars made in the same minimal contractionwhich we introduce in the paper. That
year, she prefers cheaper ones. So the new preference isjs, in addition to providing the preferences to be discarded
represented as-»! one can also provide the preferences topbetected from
01 %2 09 = 01.Y > 09.y V 01.4 = 09.y A 01.p < 02.p removalin the modified preference relation. o

The problem we tackle in the paperfiading minimal
contractions of preference relations which preserve SPO
The main results of the paper are as follows. First, we
present necessary and sufficient conditions of the minimal
- ‘ and the minimal preference-protecting contractions. Sec-
the cars made i2007 which cost1 2000 are not better than ond, we provide algorithms to compute these contractions.

the cars made i2007 costing15000. Sot, is not preferred Finally, we show how to optimize preference query evalua-
tot; any more, and thus the set of the best cars according to jon with the presence of contraction.

the new preference relation should Bg = {t1,¢4}.
The problem which we face here is how to represent the
preference relatiorn-, with that change? Namely, we want

and the set of the best cars accordingste is S, = {t4}.

Assume that having observed the set Mary under-
stands that it is too narrow. She decides that the tais
not really worse tham,. She generalizes that by stating that

2 Basic Notions

to find a preference relation obtained from, in which cer- The preference relation framework we use in the paper is
tain preferences do not hold. A naive solution is to rep- based on (Chomicki 2003).
resent the new preference as; = (-2 — CON), where Letl/ be a universe obbjectseach of each having a fixed
CON (01,02) = 01.y = 02.y = 2007 A o1.p = 12000 A set ofattributes A = {4,,...4,,}. Let each attribute4;
o2.p = 15000, i.e. CON is the preference we want to dis- be associated with domainD;. We consider here two
card. So kinds of infinite domains:C (uninterpreted constants) and
_ _ Q (rational numbers).

il(;?y()i ;;;13 2>00072ﬁ/;/1.0plﬁ 128%’5//?00;’;); 10526262)? _Binary relations? C U/ xU considered in the paper &fe

_ N i ) nite orinfinite. Finite binary relations are represented as sets
However, -3 is not transitive since if we takeés = of pairs of objects. The infinite binary relations we conside
(bmw, 2007,12000), ts = (bmw,2007,14000), andt; = here arefinitely representablasformulas Given a binary
(bmw, 2007,15000), thents >3 t6 andts >3 t7 but relationC, its formula representation is denotedf&s.

ts #3 t7. So this change does not preserve SPO. Thus, 0 we consider two kinds of atomic formulas here:
make the changed preference relation transitive, some othe

preferences have to be discarded in additio@tO.N . Atthe e equality constraints o1.A; = 02.4;, 01.4; # 02.A;,
same time, discarding too many preferences is notagoodso- 01-4i = ¢, or 01.4; # ¢, whereoy, 0, are object vari-
lution since they may be important. So we need to discard ~ ables,; is aC -attribute, and: is an uninterpreted con-

a minimal part of =, which containsCON and preserves stant;
SPO of the modified preference relation. e rational-order constraints o;.4;005.4; or o;.A;0c,
An SPO preference relation which is minimally different where 6 € {=,#,<,>,<,>}, 01,0, are object vari-
from -, and does not contai6’ON is shown below: ables,A; is aQ -attribute, and: is a rational number.
01 =5 02 = (01.Y > 02.y V 01.Y = 02.y A 01.p < 02.p)A An example of a relation represented using rational-order
=(01.y = 02.y = 2007 A 01.p = 12000/ constraints is-, from Example 1.

02.p > 12000 A 02.p < 15000)

The set of the best cars according 6, is S5 = {t1,t4}.
As we can see, the relation} is different from the naive
solution -3 in the sense that- implies that a car made in Definition 1 Given a binary relation? C U/ x U and two
2007 costing12000 is not better than a car made 2007 objectsz andy such thattRy (zy € R), zy is an R-edge
costingfrom 12000 to 1500. from z to y. Similarly, we can define a finitB-path fromx
to y and an infiniteR-path fromz.

Another way to represent binary relations is by using
graphnotation, as we show in the next definition.

The operation of discarding preferencpseference con-
traction, is the topic of this paper. As we showed in Preference relations in our framework are defined as fol-
Example 1, when discarding preferences, it is important not lows.



Definition 2 A binary relation > C U x U is apreference
relation if it is a strict partial order (SPO) relation, i.e. tran-
sitive and irreflexive. The formula representatibn of >
is called apreference formula

An element of a preference relation is calkedreference
We use the symbo}- to refer to preference relations. The
following expressiorv; > oy is a shortening fofo; >
02 V 01 = 09).

3 Preference contraction

The key notion of preference contraction is ttantracting
relationwhich defines the set of pairs of objects such that the

Lemma 1 Given a preference relation (i.e. an SP®)and

a relation P~ C»>, (> — P7) is a preference relation
(i.e. an SPO) iff for everyy € P~, (> — P~) contains
no paths frome to y.

Now let us consider minimal preference contractions. For
instance, take the minimal contraction from Example 2.
Note that adding any edge from a minimal contraction to the
contracted relation createg80 N-detour in the contracted
relation. However, having’O N-detours in the contracted
relation violates its transitivity by Lemma 1. This propert
of minimal contractions is formally stated in Theorem 1.

Theorem 1 Let P~ be a contraction of- by CON. Then

first object in each pair should not be preferred to the second P~ is a minimal contraction of = by CON iff for every

object. We require the contracting relation to be a subset of
the preference relation to be contracted. Apart from that, w
do not impose any other restrictions on contracting retetio
(i.e. they can be finite of infinite) unless stated otherwise.
Throughout the paper, all contracting relations are dehote
by CON.

Definition 3 A binary relation P~ is a contraction of a
preference relation- by CON if CON C P~ C», and
(> — P7) is a preference relation (i.e. an SPO). The rela-
tion (- — P7) is called thecontracted relation

A relation P* is a minimal contraction of- by CON if
P* is a contraction of>- by CON, and there is no other
contractionP’ of = by CON s.t. P’ C P*.

The notion of minimal contraction narrows the set of pref-
erence contractions. However, as we illustrate in Example 2
minimal preference contraction is generally not unique for
given preference and contracting relations. In fact, thenu
ber of minimal contractions for infinite preference relaso
can be infinite. This differs from minimal preference revi-
sion (Chomicki 2007a) which is uniquely defined for given
preference and revising relations.

u X y v
Figure 1: Preference- .

Example 2 Take the preference relatior+ as shown in
Figure 1 as the set of all edges, and the contracting rela-
tion CON = {uv}. Then there are three possible min-
imal contractions of- by CON: P = {uz,uy,uv},

Py = {yv,zv,uv}, and Ps = {uzx, yv, uv}.

3.1 Contraction conditions

Definition 4 Given a contracting relatiof®ON of a pref-
erence relation>, a >-path fromz to y is a CON-detour
if zy € CON.

First, let us consider the problem of finding any prefer-
ence contraction, not necessary minimal. As we showed in
Example 1, the naive solution of computing the set differ-
ence of - andCON does not preserve SPO. We formulate

xy € P, there is aCON-detourT in > which contains
the edgery and no other edge iff’ is in P~

Or, in other words, for any edge i?—, there exists at
least oneC' O N-detour which is disconnected only by that
edge.

In fact, the condition from Theorem 1 can be stated in
terms of paths of length 3 due to the transitivity ef

Corollary 1 A contractionP~ of > by CON is minimal
iff the formula
Y,y 3u,v( Fp-(z,y) A Feon(u,v) A Fe(z,y)A
—Fp-(u,z) A —Fp-(y,v)A\
(Fe(u,2) V=) A (F(y,0) Vi = v))
is valid.

Therefore, checking minimality of a contraction can be
done by performing quantifier elimination on the above for-
mula.

3.2 Construction of minimal contraction

In the algorithm computing a minimal preference contrac-
tion introduced in this section, we use the following idea.
Take Example 2 and the sBf . That set was constructed as
follows: we took theCON-edgeuwv and put inP; all the
edges which start some path franto v. For the preference
relation > from Example 2,P; turned out to be a minimal
contraction.

Generally, ifCON contains more than one edge, the set
consisting of all edges startingO N-detours is a contrac-
tion by CON.

Lemma 2 Let - be a preference relation andON be a
contracting relation of>-. Then

P ={a2y|Jazv e CON .z >-yA(y>=vVy=wv)}
is a contraction of- by CON.

However, in the next example we show that such contrac-
tion is not always minimal.

Example 3 Take the preference relation as shown in Fig-
ure 2(a) as the set of all edges, and the contracting relation
CON shown as the dashed edges.

Let P~ be defined as in Lemma 2. Thés — P7) is
shown in Figure 2(b) by the solid edge&~ is not mini-
mal because?~ — {z;z5} is also a contraction of- by

below a necessary and sufficient condition for a subset of a CON. Infact, P~ — {z1z2} is aminimal contraction of -

preference relation to be its contraction.

by CON.



(b) = —P". (c) Minimally con-
tracted .

(a) Preference-

Figure 2: Preference contraction

As we can see, having the edge, in P~ was not neces-
sary. First, itis not aCO N-edge. Second, thiéO N-detour
x1 > o > x4 iS already disconnected bypzy € P~

As we show in Example 3, a minimal contraction can
be constructed by adding to it only the edges which start
someC'ON-detour if the detour is not already disconnected.
We follow this idea in Algorithm 1. The algorithm returns
a minimal preference contraction by a contracting relation
CON under the condition that’ ON is ak-layer relation
defined as follows.

Definition 5 A layer indexof an edgery € CON s the
maximum length of a--path started by and consisting
of the end nodes of ON-edges A layeris the set of all
CON-edges with the samayer index

ThenCON is ak-layerrelation if

mazzyecon (layer index ofry) < k

We need thé-layer property in the algorithm to be able
to partitionCON into layers and then process the layers one
by one.

Example 4 Let a preference relation- be defined be de-
fined aso; = 02 = 01.p < 02.p., Wherep is a Q -attribute.

Let also the contracting relation§ON; and CON- be
defined as

CON;(01,02) =01.p < 1A (02.p =2V 03.p = 3).
CON3y(01,02) =01.p <1 ANo2.p>2

ThenCON; is ak-layerrelation since there exists only one
chaino; = o, of the end nodes afON,, whereo,.p = 2
ando».p = 3. The length of this chain .

The relation CONs is not k-layer since all >-paths
started by objects with the value pequal to2 are infinite.

Algorithm 1 constructs a contractioR~ of CON by
picking the layers ofON in the ascending order of their
layer index For each layer, we add 8~ a minimal set of
~-edges which contract by theCON-edges of that layer.

Theorem 2 Algorithm 1 returns a minimal contraction of
= by CON and halts ink iterations for ak-layerrelation
CON.

Algorithm 1 minContr(>, CON)

1:.i=0,F; =0,Co=CON

2: repeat

3 =i+

4:  {Find the dest. nodes of thieth layerCON-edge$
L;:={y|3x(zy € Cim1 A—=Fuv € Ci_1(y > v))}

5. {Find the edges contracting th¢h layer of CON'}
E,:={zy|3v € Li(xzv € CON Az = y A (y =
vWy=v)Ayv & P_, ANyv ¢ CON)}

6: P :=P_,UE,; {Addthese edgestB,_,}
7. C; =C;_1— E;

8: until C; =0

9: return P,

Example 5 Let a preference relation- be defined by the
solid edges in Figure 3(a). The transitive edges are skipped
Let a contracting relatiolCON be defined by the dashed
edges.

==
- ~
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(a) Preference- (b) > after Step 1 (c) > after Step 2

Figure 3: Preference contraction
Then the result of applying the first step of the algorithm
is shown in Figure 3(b). Namel, = {zs}, P, =
{zaws, 2224, x225}. At the second iteration (Figure 3(c)),
Ly = {.234} and PQ_ = Pl_ U {1‘1]}3,.2311‘4}. At the third
(and the last) iteration,L3 = 0, i.e. all CON-edges are
already processed.

We believe that the k-layer restriction is not too severe
because in many casé8)N is provided as a finite set of
object pairs. Such relations are k-layer by definition.

Thek-layerproperty of CON is crucial for the algorithm
since it guarantees its termination.dON is not ak-layer
relation, then the algorithm is incomplete: it misses some
infinite descending paths, i.e. returns a minimal contoacti
by asubsebf CON, or fails to terminate.

An important property of Algorithm 1 is that it works for
finite as well as finitely representable infinite prefererese r
lations. Our implementation for finite relations (Appendix
10) requires time)(|CON|?- | = |- log(]=1)). In the case
of finitely representable preference relations, the et&’;,

P, andC; have to be replaced with the corresponding for-
mulasFr,, Fg,, Fp—, andF¢,; all the set operations have
to be replaced with the corresponding boolean connectives;
and quantifier elimination should be used to compkite
andFg,.

We also note that any contractiétt generated by Algo-
rithm 1 has the property that any edgefin starts aCON-
detour in . We call such contractionzefix contractions

4 Preference-protecting contraction

Generally, it is not always the case that all minimal contrac
tions are equivalent from the point of view of users. For in-
stance, a contraction may discard some preferences (in addi
tion to CON) which the user does not want to discard. Thus,



in addition to specifying a contracting relati6GfO N, a sub-
set Pt of the original preference relation to be protected
in the contracted preference relation may also be specified.
Such a relation is complementary w.r.t. the contracting re-
lation: the relationC’ON defines the preferences to discard
whereas the relatioR ™ defines the preferences to protect.
Such a situation often arises in real life. For instance,
some preferenceB™ may be more important than others,
so P* should hold after contraction. Moreover, in many
iterative preference modification framewori! is the set
of the recently introduced preferences meaning that the old
preferences are less relevant and thus may be dropped.

Definition 6 Let P C . ThenP* is a minimal contrac-
tion of = by CON that protectsP* if 1) P* is a minimal
contraction of = by CON, and 2) P* N P = {).

4.1 Contraction conditions

Given any contractiol?~ of = by CON, by Lemma 1,
P~ must contain at least one edge from ev€iy N-detour.
Thus, if P+ contains a whol€ O N-detour, protecting®™

in a contraction of>- by CON is not possible. The same
holds for minimal contractions, too.

Theorem 3 Let CON be a k-layer contracting relation,
and PT C . There exists a minimal contraction of by
CON that protectsP™ iff P, N CON = (), where P},
is the transitive closure ofP™.

4.2 Construction of minimal preference-protecting
contraction

A naive way of computing a minimal preference-protecting
contraction is to find a minimal contractio®®~ of

(> — P*) and then add”* to P~. However,(>~ — P*)

is not an SPO in general, thus preserving SPQANU PT)
becomes problematic.

The algorithm we propose here is a reduction to the min-
imal contraction algorithm shown in the previous section.
First, we find a contracting relatiofON’ such that con-
tracting = by CON’ is equivalent to contracting- by
CON with protectedP*. After that, we use Algorithm 1
to contract> by CON'.

The intuition beyond the algorithm is as follows. Take any
minimal prefix contractionP~ of > by CON. The prefix
property implies that if°"-edges do not stactO N-detours
in =, thenP~ N PT = () and thusP~ is a minimal con-
traction which protect®*. However, if P contains edges
startingCON-detours, then any’*-protecting contraction
has to contain the s€) defined in the next proposition.

Proposition 1 Take anyP* C . Then any contraction of
= by CON protectingP* contains the sef)

Q={ry|u:u>=2>yAuyec CON Aux € PT}

We show further that it is transitive and®~ a minimal
prefix contraction of- by CON UQ, thenP~ protectsP*.
Finally, we show that sucR~ is also minimal w.r.t. notonly
CON U@ but alsoCON.

Algorithm 2 minContrProt(-, CON, PT)

Require: P is transitive

1 Q={zy|Ju:u>z>yAuy € CON Auz € PT}
2. CON'=CONUQ

3: P~ = minContr(>,CON")

4: return P~

Theorem 4 If CON is a k-layer contracting relation, and
P is transitive, then Algorithm 2 terminates and returns
a contraction of = by CON which 1) is minimal, and 2)
protectsP.

Note that we use the function nCont r in Algorithm 2
because”ON’ is a k-layer relation. It is explained by the
fact thatCON is a k-layer relation and the set of the end
nodes ofCON’ edges coincides with the corresponding set
for CON by the construction of).

As in the case of Algorithm 1, Algorithm 2 can be used
to find contractions of finite and finitely representable pref
erence relations.

5 Query evaluation in database framework

Dealing with preferences, the two common tasks are
1) given two objects, find the more preferred one, and 2) find
the most preferred objects in a set. The former problem is
solved easily given the preference relation. To solve ttez la
problem, thewinnow operatoris proposed in (Chomicki
2003). It picks from a given set of objects the most pre-
ferred objects according to a given preference relation. A
number of optimization methods to evaluate queries in-
volving winnow have been introduced (Chomicki 2007b;
Hafenrichter & KieR3ling 2005).

Definition 7 Let U/ be a universe of objects each of each
having the set of attributed. Let > be a preference relation
overl{. Then thevinnow operators written asw. (/), and
for every finite subset of U:

wy(r)={ter|-3 ert' -t}

In this section, we show some new techniques which can
be used to optimize evaluation of the winnow operator under
contracted preferences. The results below are represented
terms of the standarelational algebraoperatorselection
denoted agr(r). It picks from the object set all the ob-
jects for which the conditiod” holds. The conditiorF’ is a
boolean expression involving comparisons between at&ibu
names and constants.

In user-guided preference modification frameworks
(Chomicki 2007a; Balke, Guntzer, & Siberski 2006), itis as-
sumed that users alter their preferences after examintsg se
of the most preferred objects returned by winnow. Thus,
if preference contraction is incorporated into such frame-
works, there is a need to compute winnow under contracted
preference relations. Here we show how the evaluation of
winnow can be optimized in such cases.

Let > be a preference relatio6}ON be a contracting re-
lation of -, and =’ be a contraction of- by CON. Denote
the set of the starting and the ending object€'6fN-edges
asS(CON) andE(CON) correspondingly.



S(CON) ={z|Jzy € CON}

E(CON) ={y|3zy € CON}
Similarly, define the set§(P~) and E(P~). Let us also
define the sed/ (CON) of the objects which participate in
CON-detours in>
M(CON) ={y|3z,y,z.x >y ANzz € CONA

(y=zVy=2z)}
Assume we also know quantifier-free formulBs p- ),

Frp-y, Facony, and Fgcony representing these sets.
Then the following holds.

Proposition 2
- wy(r) S wei(r)
NMopg - (ws(r) =0, thenw, (r) = wyr(r).
0 (1) = w0 (1) Uom, - ()
. If P~ is a minimal contraction, then

Wy (T) = Wy (’LU>_ (T) U OFym(con) (T))
5. If P~ is a prefix contraction, then

OFg p-) (r) = OFscon) (r)

According to Proposition 2, the result of winnow under

A W NP

a contracted preference is always a superset of the result of
winnow under the original preference. This is caused by the

postulates (e.g. transitivity) and performs minimal chaing
of preferences. However, due to the generality of the frame-
work, the postulate set and the measure of minimality are not
fixed. (Hansson 1995) defines contraction only for finite do-
mains and does not provide any methods of computing con-
tractions. There is also no notion of preference-protegctin
contraction.

(Dong et al. 1999) proposes algorithms of incremental
maintenance of the transitive closure of graphs using rela-
tional algebra. The graph modification operations are edge
insertion and deletion. Transitive graphs in (Doeigal.
1999) consist of two kinds of edges: the edges of the original
graph and the edges induced by its transitive closure. When
an edgery of the original graph is contracted, the algorithm
also deletes all the transitive edgessuch that all the paths
fromw to v in the original graph go throughy. As a result,
such contraction is not minimal according to our definition
of minimality. Moreover, (Donget al. 1999) considers only
finite graphs, whereas our algorithms can work with infinite
relations.

Other preference modification operations are proposed in
(Chomicki 2007a) and (Balke, Guntzer, & Siberski 2006).
However, they do not address preference contraction.

In this paper, we consider only one kind of contraction

fact that if we reduce the set of preference edges, the set of constraints - preference protection. However, other con-

undominated objects can only grow.

straints are also feasible. For instance, one could require

In the second case, the contraction does not change thethat if a contraction protects a preference relafiynthen it

result of winnow. Running the winnow query is generally

should protect?,”. Another direction is to design contrac-

expensive, thus one can first evaluate the specified seiectio tjon algorithms which are not limited to k-layer contragtin

qguery over the computed result of the original winnow. If

relations. Since other preference models (e.g. CP-nets) ca

the result is empty, then computing the winnow under the pe represented in the binary relation framework, an interes
contracted preference relation is not needed. The reagonin ing direction is to apply our results in those frameworks.

here is as follows. Take the preference relationThen for
any dominated object € r there is an object’ € wy (r)
dominatingo. However, ifo is in w..(r) theno’ does not
dominateo in >’. Thus some--edges going fromu, (r)
are lostin>-'.

Appendix 1. Proof of Lemma 1

Lemma 1. Given a preference relation (i.e. an SP®)
and a relationP~ C >, (> — P~) is a preference relation

The third statement of the proposition is useful when the (i-e. an SPO) iff for everyy € P~, (>~ — P~) contains no

setr is large and thus running... over the whole set is
expensive. Instead, one can companpe;ﬂp_)(r) and then
evaluatew,., over (O’FE(P_)(T) U wy(r)) (assuming that

w,(r) is already known). However, if the size of the for-
mula Fiyp-y is too large, then runninng(P_)(r) may

be also expensive. In this case, one can use a superset o

O, o, (1), fOr exampler s, o, (7).
It may be the case that the size Bfp-) is large and
thus evaluation oefrFS(P_) (r) is expensive. Then, iP~ is a

prefix contractionone can usé’sco) instead offg p- ).

6 Related and future work

paths fromz to y.

Proof
< Prove that if for allzy € P~, (> — P~) contains no
paths of fromz to y, then(> — P~) is an SPO. Clearly,
since > is irreflexive, (>~ — P~) is irreflexive, too. Prove
that(>- — P~) is transitive. If(~ — P7) is not transitive,
then there are exist such objegtsy, z thatzz & (>~ — P7)
butzy,yz € (= — P~). Thuszz € P~ and there is a path
in (> — P~) from z to z consisting of two edgesy and
yz. However, this contradicts to the assumption that there is
no path in( >~ — P~) from« to z for everyzz € P~.

= Prove that if(> — P~) is an SPO, thefi>~ — P~)
contains no paths from to y for everyxzy € P~. Clearly,

A general framework of preference change is proposed in if zy ¢ (= —P~) but there is a path from to y in (-
(Hansson 1995). Preference change there is considered from— P~), then( = — P~) is not transitive.

the point of view of belief change theory. In addition to con-
traction, it introduces the operators of revision, domain e

pansion and reduction. Preference contraction is defireed vi

preference revision. Similarly to our definition, the prefe

ence contraction from (Hansson 1995) preserves ratignalit

Appendix 2. Proof of Theorem 1

Before going to the proof of Theorem 1, let us define the set
® which we use in the proof of the theorem.



Definition 8 Let CON be a contracting relation of a pref-
erence relation-, and P~ be a contraction o by CON.
Fix any edgery € P~ — CON. Let

o Oo(zy) = {ay}
o O;(zy)= {uv; € P~ |Fu;—1vi—1 € D,_1(zy)
(’U,i = Uj—1 N Vi—1 > Ui\ Vj_1; Qf P~ \/
Us ™ Ui—1 N Vi—1 = Ui\ UjU;—1 ¢ P_)},
Then®(zy) is defined as

O(ay) = | ®i(ay).
=0

Figure 4:®(xy) for Example 6.

Example 6 Let a preference relation- be the set of all

edges in Figure 4 an®~ be defined by the dashed edges.

Let us construc®(zy) (assuming thaty is not an edge of
the contracting relation).

o o(zy) = {zy};
o Oy (xy) = {zv,zz};
o Oy(zy) = {uv,uz};
So®(zy) = {zy, zv, 2z, uv, uz}.
Some properties of the sétare shown in Lemma 3.

Lemma 3 Let P~ be a contraction of a preference relation

> by a contracting relationCON. Then for everyry €

(P~ — CON), ®(xy) has the following properties:

1. foralluv € ®(zy), u = z andy = v;

2. foralluv € ®(xy), ux,yv & P~;

3. if (®(zy)NCON) = 0, then(P~ — ®(zy)) is a contrac-
tion of = by CON.

Proof

Properties 1 and 2 We prove the first two properties by
induction or.

Base casef-or everyuv € ®(xy) the properties hold by
the construction o®,.
Inductive casel et the properties hold fob, (zy), i.e.

Yu;v; € ‘In(a:y) — U = T NY TV AU, Y, Qf P~ (1)

Prove that these properties hold for every 1v;41 €
®;11(zy). Sinceu;1vi1 € Pi11(zy), the following is
true

Fuv; €P;(xy)(
Uir1 = U N V; = Vip1 N\ VU1 5? P~V
Uit1 ™ Ui ANV = Vi1 N\ Uip1U; Q Pi) (2)

Prove thatu;,; > x andux ¢ P~ (the case ofjv;y1 is

similar). Show that these statements hold for each disjunct

from (2).

Case 1. Take the first disjunct from (2), i.e.
Uit1 = U N V; = Vigp1 N\ VU1 5{ P~ (3)

Then (1) and (3) imply:;+1 = z andu; 1z & P~.
Case 2. Take the second disjunct from (2). So

WUit1 ™ Wi NV = Vi1 N\ Uip1U; g P~ (4)

u;+1 >~ x by transitivity of -. Second, (1) and (4) imply
w;x & P~ andu;4qu; € P~. Thus,u;412 € P~ by transi-
tivity of (>~ —P7).

Property 3.Show that if®(zy) N\CON = (), then(P~ —
®(zy)) is a contraction of- by CON.

First, (®(zy) N CON) = ) andCON C P~ imply
CON € (P~ — ®(zy)). Hence, we only need to prove that
(= —(P~ — ®(zy))) is transitive (its irreflexivity follows
from the irreflexivity of >).

Intransitivity of (= —(P~ — ®(xy))) means

Fu,v, z(uz & (= —(P~ — ®(ay)))A
uv,vz € (= — (P~ — ®(zy)))) (%)

(5) impliesuz ¢ (> —P7).
(= —P7), we get

First, (1) and (4) implyu;+; > u; andu; = x. Thus

Thus, by transitivity of

wé (- —P )Vuzd (> —P7). (6)
(6) and (5) imply
uv € ®(xy) V vz € D(zy) @)

By definition of ®(zy), it is not possible that botlw andvz
are in®(zy). W.l.o.g. assume that

uv € O(ay) Avz € (zy) (8)
From (8) and (5), it follows that
uv € ®(xy) Avz & P~ (9)

However, (9) impliesuz € ®(xy) by definition of &(xy).
Thusuz € (= —(P~ — ®(xy))) which contradicts to (5).

Theorem 1. Let P~ be a contraction of>- by CON.
Then P~ is a minimal contraction of = by CON iff for
everyzy € P, there is aCON-detourT in > which con-
tains the edge:y and no other edge iff’ is in P~

Or, in other words, for any edge i, there exists at
least oneCON-detour which is disconnected only by that
edge.

Proof

= First, prove that ifP~ is a minimal contraction, then for
everyxy € P~, there exists & O N-detourT disconnected
only by zy, i.e.

Vzy € P~ (3CON-detourT(
2y € T AVuv(uv £ zy Auww € T — uv € P7)))

Assume it is not the case. Then
Jry € P~ (VCON-detourT(
2y € TV Juv(uv Zxy Auv € T Auv € P7))) (1)



Consider the first disjunct of (1). That is, prove that for
anyxzy € P, there exists aZ’ON-detour whichzy be-
longs to. If for somery € P, no such detour exists, then
®(xy) N CON = @ by the construction o®(zy). Hence
by Lemma 3(P~ — ®(xy)) is a contraction of by CON.
This contradicts to the assumption ti#t is aminimalcon-
traction.

Consider the second disjunct of (1). Similarly to
what we did above, let us show th@{(xy) N CON = 0.
If Juwv € ®(xy) N CON, then by Lemma 3,
urxrAy=vAur,yv & P, ie. there's alON-detour
from u to v where onlyzy is in P~. However, we assumed
that such a detour does not exists. TBUBN Nd(xy) = 0.
Then by Lemma 3(P~ — ®(xy)) is a contraction of- by
CON. This contradicts to the assumption tifat is amin-
imal contraction.

< Let for every edge inP~, there exists at least one
CON-detour disconnected only by that edge. In this case,
if we remove some edgey from the contractionP—, then
there will be aC'ON-detour which is not disconnected and
thus by Lemma 1( >~ —P~ U {xy}) is not a contraction of
> by CON. Hence,P~ is a minimal contraction.

Appendix 3. Proof of Corollary 1

Corollary 1. A contractionP~ of > by CON is minimal
iff the formula

v,y Ju, v(Fp-(2,y) A Foon (u,v) A F (2, y)A
—Fp-(u,z) A =Fp-(y,v)A
(Fe(u,z) Vu=2x) A (F-(y,v) Vy =

v)) (@)

is valid.
Proof
Prove that the validity of (1) is equivalent to the necessary
and sufficient condition from Theorem 1. Namely, prove
that (1) is valid ifffor every edgey € P—, thereisaCON-
detour disconnected only hyy.

< (1) implies that for allzy, there is a8CO N-detour con-
sisting of one (ifu = x andy = v) up to three (ifu # x and
y # v) edges going fromx to v which is disconnected only
by zy.

=- Assume that for some edgg € P, thereisaCON-
detour fromu to v

U e m T 7Y > .. 7™V

disconnected only by:y. The detour fromu to = is not
disconnected, and thus, by transitivity ©f —P~), uz €
(> —P7) unlessu = z. Similarly, eitheryv € (>~ —P7)
ory = v. Hence, there is 8 O N-detour of at most three
edges disconnected only by).

Appendix 4. Proof of Lemma 2

Lemma 2. Let > be a preference relation andON be a
contracting relation of>-. Then

P :={ay|Jzve CON .z -yA(y>vVy=nuv)}

is a contraction of- by CON.

Proof
To prove thatP~ is a contraction of- by CON, it suffices
to show thaCON C P~ and(>- —P™) is transitive. First,

(= —P7) is transitive by Lemma 1, since for every edge
xy € P~, the starting of each detour fromto y is in P~.
Second P~ containsCON by construction.

Appendix 5. Proof of Theorem 2

Before we go into the details of the proof, let us define the
relationsaboveandbelowover edges.

Definition 9 Given a preference relatios and two edges
zy, z'y’ of =, the edgery is above(or below) the edger’y’
if y =y (ory’ > y, correspondingly).

The next notionforks, is used to simplify the description
of the theorem proof.

Definition 10 Let > be a preference relation ang~ be a
subset of-. Then a triplezyz is afork in = —P~ if 1)
x =y >z and 2xz,xy € P~ Ayz & P~ (of, zz,yz €
P~ ANxy & P7).

X y z X y z
(a) Fork zyz, the (b) Fork xyz, the
shorter edge zy, shorter edgeyz,
the longer edge 2. the longer edge z.

Figure 5: Forks

The edgey (or, y=z respectively) is callethe shorter edge
of the forkandzz is calledthe longer edge of the fork

To keep the notation simple, let us denote the relation re-
turned by Algorithm 1 ag®~.

Lemma 4 Algorithm 1 returns a contraction af by CON
and terminates itk iterations for ak-layerrelation CON.

Proof

1) Termination Prove that the algorithm stops kitera-
tions. Note that the initial value af’ (i.e. Cy) is equal to
CON. In each iterationf; is constructed as a superset of
the set of the bottom most edges(if ;. After that, the set
C;_1 is reduced byE;. SinceCy hask layers the function
will terminate in k iterations when all the layers a@fON
are exhausted.

2) Contraction. Prove thatP~ is a contraction of- by
CON,i.e.a)CON C P, and b)(>~ —P,") isan SPO.

a) E; calculated at every iteration of the algorithm is a su-
perset of th&’ O N-edges of layei. HenceP; is a superset
of theCON-edges of the layersthroughi. Therefore P~
is a superset afON.

b) Prove thaf - — P, ) is an SPO. Since- is irreflexive,
(= —P, ) is irreflexive, too. So it suffices to show that
(= —P, ) is transitive. Prove that the relatidi+- —P,") is
transitive for every from 0 to k. We do it by induction orn.

1) Base step(>~ —F, ) = Is transitive since- is an
SPO relation.



2) Inductive step. Let - — P, ) be transitive. Prove that
(= — P;,,) is transitive, too. For the sake of contradiction,
assume that - — P, ) is not transitive. So there exist
x,y, z such that

ry € Py =P UBEin @

but
xz,2y & P =P UE;1 2

(1) implies that eithewy € P, orzy € E;4;. How-
ever,zy € P along with (1) implies that = —P;") is not
transitive which constradicts to the assumption. Thus

xy € B (3)

Therefore, by the definition df; 1, the following is true

Fv € Liz1(zv € CONAz > y = vA
yo & PT Ayv g CON)}  (4)

So we have theON-edge xv with v € L;;; and
x > z » v by transitivity of . From (2), we know that
xz € E;yq. Itimplies (by the definition of; 1) that either
1)zve P or2)zv e CON.

Figure 6: Transitivity. Inductive case. Dashed edges are in

(Ei+1 U P, ). Solid edges are i~ —(E;+1 U P;)).

Incase 1) we havev € P, zy & P, yv &€ P. We
also know from (4) thay = v ory > v. However,y can
not be equal tw since therey € P, andzy ¢ P, . Atthe
same timey > v implies that( > —P;") is not transitive.
Contradiction.

Consider case 2), i.ezv € CON. Sincev € L;y4, by
the definition ofE; 1, we have three choices: @) € F;.1,
(i) yv € CON, and (iii) yv € P, by the construction of

E;11. The choice (i) contradicts to (2). The choices (ii) and

(iii) contradict to (4). Contradiction.

Lemma 5 Take thei-th iteration of Algorithm 1 for any.
Then for any nor©ON edgexy of E;, there existv € L;
such thatzyv is a fork in (> —P~) with the shorter edge

xy.
Proof
Take anyry € E; — CON. Then by the definition of;,

Jv e LiNaxv € CONAx =y = vA
yv g€ Py ANyv ¢ CON (1)
By construction ofP~, E; C P~. Thus
Ty € P™. (2)
By Lemma4,CON C P~. Thus
v € P, 3)

Moreoverpy = y would mean thaty is aCON-edge which
contradicts to the assumption. From that and (1), we get

Y - . (4)

Assumezxyw is not a fork in(> —P~). Then (2), (3), and
(4) imply thatyv must be inP~ (otherwisexyv is a fork).

Thus there existg such that < j andyv € E;. The next
expression shows what it means farto be inE;

Ju e Lj(yu € CONAY = v = uA
vu g P,y Avu g CON)  (5)

As aresultyv € CON (see (1)) andju € CON (see
(5)) imply thatv # w« and thusv > u. However, since
u € Lj,v € L, andj > 4, v > u is not possible by the
construction of;, L.

Theorem 2. Algorithm 1 returns a minimal contraction of
> by CON and halts ink iterations for ak-layerrelation
CON.

Proof

1) Termination See Lemma 4.

2) Contraction See Lemma 4.

3) Minimality. Prove thatP,~ is aminimalcontraction of-
by CON. By Lemma 5, every noii:ON edgexy in P~
is the shorter edge in a forgyv in (= —P~) wherezv is a
CON-edge. Thus, the two-edgeO N-detour consisting of
the edgesy andyw is disconnected only byy. Hence, by
Theorem 1,P~ is a minimal contraction.

Appendix 6. Proof of Theorem 3

Theorem 3. Let CON be a k-layer contracting relation,
and P™ C »~. There exists a minimal contraction of by
CON that protectsP* iff P, N CON =0, where P},
is the transitive closure of”™.

Proof

= Prove that ifP~ is a minimal contraction of by CON
protectingP*, thenPf, N CON = . If 3zy € P, N
CON, then there is & ON-detour fromz to y which is
entirely in P+, and no edge from this detour isir. How-
ever, the edgey must be inP—, sinceP~ is a contraction
by CON. Thus by Lemma 1(> —P~) is not transitive,
and P~ is not a contraction of by CON.

< If P{, N CON = 0, then Algorithm 2 can be used to
compute a minimal contraction of by CON protecting
P,

Appendix 7. Proof of Proposition 1
Proposition 1. Take anyP* C »=. Then any contraction of
= by CON protectingP™* contains the sef)
Q={ry|Fu:u=z>yAuy € CON ANux € PT}
Proof
Take any contractio®®~ of = by CON protectingP*. Let
Ty € Q,i.e.
Ju:u=x=yAuy € CON Aux € PT.

Thenuy € CON impliesuy € P~. SinceP~ protects
Pt ux ¢ P~. Thusifzy ¢ P, then(> —P~) is not
transitive and therefore not a contractionef Hence,zy
must be a member @?—.



Appendix 8. Proof of Theorem 4
In Theorem 3 we showed that

Pf.NCON =) (A)

is required to be able to construct a minimal contraction of

= by CON with protected”*. So in the following theorem,
we assume that the above condition holds.
Theorem 4. If CON is a k-layer contracting relation,

and P is transitive, then Algorithm 2 terminates and re-

turns a contraction of- by CON which 1) is minimal, and

2) protectsP.

Proof

1. Termination Prove that the functiomi nCont r Pr ot
terminates. Note that by the construction@ N’, if we
take any edgey € CON’, there will be an edge’y €
CON. Thus, ifCON is a k-layer relationCON" is k-
layer, too, and by Theorem & nContr (>, CON’)
terminates. Hence, the functiom nCont r Pr ot termi-
nates, too.

2. Contraction & PT protection By Theorem 2,
m nContr (>, CON’) returns a contractio”~ of >
by CON’. Clearly, sinceCON C CON’, P~ is also a
contraction of- by CON.

Now prove thatP~ protectsP™, i.e. thatPT™ N P~ = (.

Assume
Jzy € P NPT, (1)

Since P~ is returned byni nCont r, there existg such
thataxy € E;, i.e.

Jv e Li(xzv € CON' ANz =y A(y =vVy=0)

Ayv & PZy Ayv & CON')} 2

, .
, .
, .

/ N
ST T Y

X y \% u X y v
(a) Case 1. (b) Case 2.

Figure 7: Proof ofP* preservation.
(2) implies these two cases: &y € CON, and 2)zv €

Cése 1.
xv € CON. 3)
Theny = v along with (3) and (1) violate (A). Therefore,
(2) implies
Yy = . 4)

Next,zv € CON andzy € PT imply yv € Q by the
definition of Q. Thusyv € CON’ = CON U Q. How-
ever, this contradicts to (1).
Case 2

v € Q.

Then, according to the expression @rwe get

©)
Ju:u>=z=vAuw € CON Aux € Pt (6)

Fromux € PT andzy € PT we get thatuy ¢ P+ by
transitivity of PT.

3.

Fromuv € CON anduy € P7 it follows thatyv € Q
by definition of Q. So we get the same contradiction as in
case 1.

Minimality. Use Theorem 1 to prove th&t™ is a mini-
mal contraction ot~ by CON. We need to show that for
everyzy € P~ there's aCON-detour which is discon-
nected only byry.

By Theorem 2,P~ is a minimal contraction of- by
CON'’. Thus, by Theorem 1, there is@ON’-edgeuv
such that a patfi’ from « to v is disconnected only byy.
We have two choices: Iy € CON, and 2yuv € Q.

In the first case, the same péthwill satisfy the minimal-
ity condition of Theorem 1.

In the second casep € @ implies

Jz:z>=u>=vAzv € CON A zu € Pt

Take the patil” which consists of the edge. and the
pathT appended to it. This path’ is a CON-detour
going fromz to v and is disconnected by only;. Hence,
T’ satisfies the minimality condition of Theorem 1.

Appendix 9. Proof of Proposition 2
Proposition 2

p w0 NPE

wy(r) € wyr(r)

Ifop ws (r)) = 0, thenw, (r) = we (7).

S(P—)(
Wi (r) = wyr (Wi (r) Vo, . (1))
If P~ is a minimal contraction, then
W (T) = Wy (’LU>_ (T) U OFym(con) (T))
If P~ is a prefix contraction, then
OFgp-) (r) = O—FS(CON)(T)

Proof

1.

By definition,w, (r) contains the set of the undominated
objects w.r.t the preference relatisn Thus,~'C> im-
plies that if an object was undominated w.r#, it will be
undominated w.r.t’, too. However, ifo was dominated
w.r.t. =, it will become undominated w.r.t’ if all the >-
edges going to were contracted. Thus, (r) C wy(r).

. Assume that there is an objecsuch that

1)

0 € wer(r) —we(1).
Sinceo ¢ w. (1), there is an objeat’ such that
o' €Ew.(r)ANo = o.

(2)
However, since € w..(r), the object’ does not domi-
nateo w.r.t -’. Thus,

ooc P~ (3)
ando’ € S(P7). Since, o’ € wy(r), we geto’ €
UFS(Pf)(w>(7“)), i.e. UFS(Pf)(w> (r)) # 0.
It is clear that for any subset of r» which contains
wy(r), we havew, (r) = w..(r'). Thatis,

Vr'(wer(r) Cr' Cr — wei(r) = we(r")  (4)
Therefore, to prove (5)
wer(r) = wes (e (1) Uogy, (1) (5)



we need to show that

wys (1) Cwse(r)U O'FE(P_)(T)
or
w>/(7‘) — Wy (7") c O'FE(P_)(T)' (6)

Take the objects ando’ as shownin (1) and (2). Then (3)
implieso € E(P~). Moreover, (1) implies € r. Thus,

o€ O’FE(P7>(7" .
4. From Theorem 1, it follows that the statement (7) is true.
0F, 0 (1) € TPypicom (1)- )
Moreover, (7) implies (8)
wy (1)U OFyp- (r) Cw.(r)u O ey (r). (8)

(8), (5), and (4) imply

Wy (1) = wer (W (r) U OFy(con) (r))

5. Follows from the definition gprefixcontractions.

Appendix 10. Finite case implementation of
Algorithm 1

Here we present an implementation of Algorithm 1 for
the finite case of>-(X, Y) and CON( X Y). It con-
sists of three functionsi ni t, get Layer Or der, and
m nContrFinite. It constructs a tableR( X, Y, F)
which is a copy of- ( X, Y) with the flagF set to1l if the
corresponding tuple is a member of the minimal contraction
returned by the algorithm.

The functioni ni t initializes the algorithm by creating
the tableR, setting the flag- to 1 for all the CON-edges of
R, and sortingR and CON.

Algorithm 3 init( =, CON)

1: Create atabl®( X, Y, F) and copy~( X, Y)
to it. For each row oR, setF to 0.
: SortR by the pair( X, Y) .
SortCON by the pair( X, Y) .
: forall t in CONdo
t’ :=find atuple inRwith X=t. XandY=t.Y
if t’ existsthen
t'’.F=1
end if
end for
: return R, CON

=
NN

The functionget Layer Or der ordersCON-edges by
layer index. Namely, it creates a listof the destination-
nodes ofCON ordered by the layer index of the correspond-
ing CON-edge. It is done by copying(X,Y) to in the table
T(X, Y, C) and setting the flag of eachT-tuple to1 if

Algorithm 4 get Layer Or der (R, CON)

1: Yeon = the list of allY-values ofCON

2: SortE and eliminate duplicates

3: Create atabl@( X, Y, C) and copyR( X, Y) to it. Set

the value ofC of each row td.

4: forall t inTdo

5. ift. XinEandt. Yin Ycon then
6: t.C=1
7
8

end if
: end for
: L :=empty list
. repeat
forall binL do
Ny :=# of tuples inT with X=b
if N, =0then
Pushb to the end oL
Delete all the tuples fror with Y =b
Deleteb from Ycon
end if
end for
s until [E| =0
sreturn L

Algorithm 5 mi nContr Fi ni te(>=, CON)

Require: s is transitive,CON €~

1: RCON:=init(>, CON)

2: L:=get LayerOrder (R, CON)
3: forall einL do

4 for all ¢ in CONdo

5: if c. Y=e then

6: forall t in Rdo

7 if t. X=c. Xandt. F=0then

8 if exists a tupleo in Rwith 0. X =1t.Y,

0. Y=e,ando. F=0then

9: t.F=1
10: end if
11: end if
12: end for
13: end if
14: end for
15: end for

16: return all tuplest in Rwitht. F = 1

The functionni nCont r Fi ni t e is the main function
of the algorithm. First, it performs some preparations by
callingi ni t andor der NodesByLayer | ndex. Then it
picks every elemerg of L, and for everyCON-edge which
ends ine, it checks if there is a two-eddg@ON-detour which
is not disconnected yet. If it exists, the starting edge ef th
detour is added to the contraction (i.e. the flagf the cor-
respondindr-edge is set td).

The algorithm runtime analysis gives the follow-
ing results. 1) the functioni nit requires time
O(|>~| - log|=|+ |CON]| - (log|=| + log| CON|)). 2) the

the corresponding tuple represents an edge going from onefunctionget Layer Or der requires time)(|CON|2-|~|).

CON-edge destination to another. After that, we pick all
theCON-edge destinations in the order of their layer index,
and store them in the lidt.

Finally, the loop in lines 3-15 ofri nCont r Fi ni t e re-
quires timeO(|CON|? - |~ | - log| ). Thus, the total run
time isO(|CON|? - |=| - log|=]).
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