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Abstract—Traditional deployments of wireless sensor networks  In order to address the drawbacks of the SB model, several
(WSNs) rely on static basestations to collect data. For applications work proposed to deploy a mobile basestation (MB) for data
with highly spatio-temporal and dynamic data generation, such .|jaction. The classical “data mule” work [5] proposed to
as tracking and detection applications, static basestations suffe - S
from communication bottlenecks and long routes, which cause exploit random movement of MBs to opportumsﬂcglly cotlec
reliability and lifetime to plummet. data from a WSN. Here, the nodes buffer their data and

To address this problem, we propose a holistic solution where upload only when the MB arrives within direct commu-
the synergy of the WSN and the mobile basestation improves the njcation. Although this approach eliminates multihop data
reliability and lifetime of data collection. The WSN component relaying, the tradeoff is the very high latency, which makes

of our solution is a very lightweight dynamic routing tree . . oo ..
maintenance protocol which tracks the location of the basestatio the approach unsuitable for real-time monitoring appitret

to provide an always connected network. Our basestation algo- 10 fiX the latency problem, the mobile element scheduling
rithm complements the dynamic tree reconfiguration protocol (MES) work [6] considered the controlled mobility of the

by trailing towards the data generation, and hence, reducing the MB and studied the problem of planning a path for the
number of hops data needs to travel to the basestation. While \1g 14 visit the nodes before their buffers overflow (which
both prot(_)co_l_s are very simple an_d Ilghtwe_lgh_t,_ combln_ed _they turned out to be an NP-complete problem [6], [7]). MES
lead to significant improvements in the reliability and lifetime L= D :
of data collection. We provide an analytical discussion of our WOrk, however, assumes that the data-rates in the WSN are
solution together with detailed discrete event simulations. known and fixed (constant after initialization), which isrye
limiting for monitoring applications. Controlled sink midity
in [8] reduces latencies significantly through maintenaate

The objective for deploying a wireless sensor netwonloutes to sink location from all nodes. Optimal solution for
(WSN) is to collect data from an area for some time intervahis model requires preprocessing similar to MES, but astho
Traditionally, a static basestation (SB) is deployed witle t also propose a greedy alternative. Since reactive sinklityobi
WSN, and the WSN nodes relay data over multihops towardsquires flooding of whole network, this study assumes the
the SB, which stores/uploads the data for processing. laroréink stays for relatively long durations on small number of
to improve the efficiency (which determines the lifetimeylanpredefined sink locations. This limits its ability to addyes
reliability (which determines the quality) of data collieet, dynamic data generation in an agile manner.
most of the research focus on the relay nodes. Numerousn our previous work, we presented a holistic, networked
schemes have been proposed for coordinating sleep-wakeggntrolled MB algorithm, “data salmon” [9]. Data salmon
aggregation techniques, and routing structures of they releonstructs a backbone spanning tree over the WSN, and
nodes. On the other hand, relatively little attention isegito constrains both the data relaying and the MB movements to
improve/change the basestation model, and investigatstiaol occur on this tree. The MB strategy is to greedily relocate to
solutions to the data collection problem. the subtree where most of the traffic originatésn return

The traditional SB model has several handicaps. A primawhen the MB moves along one edge of the tree, it updates
problem is that the SB constitutes a hot spot for the systethe direction of the edge to point to its new location to easur
Since the nodes closer to SB is always employed in relayitigat the root of the backbone tree is switched to be at the new
the entire traffic, these nodes deplete their batterieskiyic location of MB. Hence tracking of the MB is achieved with
putting a cap on the lifetime of the deployment. Anotheminimum cost.
major problem is due to the spatio-temporal nature of the dat while achieving low cost tracking and reducing the average
generation. In several WSN deployments, including enviroreighted relay distance of data, the data salmon also has som
mental monitoring [1], habitat monitoring [2], and espdigia shortcomings. The hotspot problem is still unresolvedcesin
surveillance systems [3], [4], it has been observed that thgta salmon uses a static backbone tree, the center of the sta
phenomena of interest are local both in time and space. FixiBackbone tree still relays a significant amount of traffic &nd
the location of the basestation ignores the nature of tha dat

geljeration and results in .I(.)ng multihop paths for relayingﬂWe showed that this greedy strategy is optimal, under thet@nts of
which leads to a lot of collisions and data losses. limiting all the data relaying to occur on the static backbtrmee.

I. INTRODUCTION



a potential hotspot. Moreover, a static backbone tree gsplioutperforms data salmon and the SB approaches consistently
that a message-loss during the handoff of MB from one noded leads to significant improvements in the reliability and
on the tree to the next leads to a permanent partitiot{ﬂng. lifetime of data collection.

Our contributions. To address the shortcomings of data We focus on one mobile region of interest (ROI) and on
salmon, we introducelata spider. Data spider relaxes theone MB. When multiple ROIs are present with only a single
static backbone tree requirement in the data salmon, ad® to follow them the performance of data spider is reduced.
maintains a dynamic tree for the data collection. This teee However, we show that data spider extends readily to allow
updated locally and efficiently by the movements of the MBseveral MBs to share the same network. There is no need to
The visual imagery is that of a spider (corresponding to thlelhange the routing in WSN or heuristics of the MB. We also
MB) re-weaving/repairing its web (corresponding to theejre provide simulation results using multiple MBs to collectala
as it moves. To complete the feedback loop, the spider reliesm multiple ROIs.
on its web to detect interesting phenomena (data geneyationOutline of the rest of the paper. Our data spider
to follow. consists of two submodules: a dynamic tree reconfiguration

Data spider fixes the hotspot problem of data salmon. Opirotocol, and an algorithm for MB relocation. We present
simulation results show that data spider extends therfiletof our dynamic tree reconfiguration protocol, DTR (retedou,
the deployment by several folds over the data salmon. Dueand discuss the handoff connectivity requirements for DR i
its dynamicaly reconfigured tree, data spider is also esgili Sectior[]l. In SectiofiTll, we present our basestation atbor
Data spider does not depend on a static backbone tree ffar relocation. We give simulation results in Sectionl IV on
routing, so faults/message-losses are not as catastioptata the scalability and efficiency of our data spider, comparing
spider as in data salmon. and contrasting it with a static basestation and data salmon

The dynamic tree reconfiguration protocol in data spider §&heme.
of interest on its own accord. The philosophy here is to updat
the tree at where it counts, where the most recent actiorois. S
instead of trying to maintain a distance-sensitive treetffier In this section, we first present the DTR algorithm. We give
entire network (which is clearly a non-local task), we maint the correctness proof of DTR in Sectibn1l-B and present the
a temporally-sensitive tree by reconfiguring the tree orily handoff connectivity requirements for DTR in Section 114&-
the immediate locality of the MB. As such the maintenanaeally, we present extensions to the basic DTR in Sedfion II-D
cost of the tree is very low. Yet this does not lead to lon )
and inefficient paths for data relaying to MB: since the MB™ DTR Algorithm
follows the data generation closely (thanks to the MB’sltrai To maintain always-on connectivity to the MB, the network
flow algorithm), the effective length of paths is only a cauplshould continuously track it and update the existing rautin
of hops. We show this in our simulation results. paths to point to its new location. Trying to maintain a

To investigate the requirements for proper handoffs by tiféstance-sensitive tracking structure (e.g., maintarérshort-
MB, we formulate thehandoff connectivitproperty. Handoff est path tree rooted at the MB) would be beneficial since it
connectivity, intuitively, captures the notion of having holes Would reduce the number of hops data need to be relayed
in the network. We note that our data spider does not requigwards the MB. However, this is inherently a non-local and
the handoff connectivity in practice. We devise a simple yepstly task as it requires frequent multihop broadcasts.
very effective algorithm—trail-flow algorithm—for the MB, Since energy-efficiency is of utmost importance for im-
that avoids bad handoffs by routing the MB around the holggroving the lifetime of data collection, in our dynamic tree
In the trail-flow algorithm, the MB follows the edges whereeonfiguration protocol, DTR, we take an alternative appioac
the most data is flowing to itself, in contrast to a follow-sm To keep the maintenance cost of the tree very low, we confine
approach of going to the source of the data directly. As weTR to reconfigure the tree only at the immediate locality
show in our simulation results, follow-source leads to save (Singlehop) of the MB. To ensure that DTR does not beget
incorrect handoffs whereas trail-flow still functions aartly long and inefficient paths for data relaying to MB, we rely on
in the same density/network. the MB algorithm. In our simulation results in Section 1V-B,

We give simulation results to investigate the scalabilitg a we show that since the MB’s trail-flow algorithm follows the
efficiency of data spider, and compare it with data salmon afl@ta generation closely, the effective length of data retay
the SB approach. Our simulator uses realistic lossy chanféths is only a couple of hops.
models and provides a high-fidelity energy calculation by DTR starts with a spanning tree rooted at the MB. This
using BMAC [10] as the model for the MAC layer com-could be established by constructing an initial tree using
municationsf Our simulation results show that data spideffooding and keeping the MB static. The root node of this

initial tree is called thenchornode, which is also the closest
2Requiring acknowledgment messages alleviates the problemalsa node to the MB. As it relocates in the network, MB chooses
increases the overhead of the protocol significantly. _ the anchor node to be the closest node to itself and makes

Since our simulator is parametrized extensively it is sutdbl modeling . .
and investigating other MB algorithms quickly. Our simulat®ravailable at periodic broadcasts to declare the anchor node to all nodes i
http:/Awww.cse.buffalo.edu/ubicomp/dataSpider/ its singlehop range. Nodes that receive the anchor broadcas

II. DYNAMIC TREE RECONFIGURATION
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update their parents (next pointers) to point to the new anchr, '} C S. Algorithm[1 dictates that all nodes i# points to
node. At any time there is a unique anchor node in the network,(with the exception of’ which points to the MB) after the
which is maintained to be the closest node to the MB. update. That is, tha@extlinks of nodes inS form a routing

We present DTR in Algorithrial 1. Only the nodes that receivieee rooted at-'.
the anchor broadcast execute an action and update their nexttet 7'(r) be a spanning routing tree 6f rooted at noder,
pointers. The anchor broadcasts are local to the singlehopaod Fs be the forest obtained by removing thextlinks of
the MB and they are not relayed to multiple hops. Fidure dodes inS from T'(r). Sincer € S, each tree infs is rooted
depicts an example of DTR execution. at a node irs € S. By definition, none of the edges in any tree

Dynamic convoy tree work [11] adresses a relevant dynanii¢ € Fs is changed. Sinceextlinks in .S forms a routing tree
tree reconfiguration problem in the context of target tmagki rooted atr’, nextlinks in Fs and.S form a spanning routing
Dynamic convoy tree maintains a monitoring tree to covédree rooted at”’. ]
a mobile ROI. The root of this monitoring tree controls While message losses are common in WSN environments,
expansion and contraction of the tree and when needed decia®st message losses do not effect the correctness of DTR
on the relocation of the root to another node based on tfEheorentl), as the definition of proper handoffs only reguir
information it collects from the entire tree. Our advantageliable message delivery between the MB and the old and
in DTR is the cooperation of the MB for relocating thenew anchors. For the remaining nodes, message loss is only
root of the tree to an optimal location using local singlehop nuisance, rather than constituting a correctness problem
updates, whereas the convoy tree needs to deal with the tkéessage losses at these nodes may result only in degraded
reconfiguration problem by using multihop update messagg®erformance, since their path is not updated to point to the

new anchor in the most direct/shortest manner. But, sinee th

Algorithm 1 DTR Algorithm previous routes point to the old anchor, which points to the
1: Wait for the anchor message new anchor, due to Theorelm 1 the network is still routing-
2: if anchor == selthen connected.

3.  next— MB The routing-connected network property is violated only
4: else ifanchore Neighborsthen when the old or new anchor miss an anchor broadcast. DTR
5. next« anchor deals with this problem in two timescales: short and long
6 end if terms. In the short term the impact of message losses are

reduced through message redundancy. Increasing the anchor
broadcast frequency at the MB improves the chances that all
B. Correctness neighbors receive the information about the new anchor.node

For clarity of explanation we use the following definitionswhen this scheme is insufficient, there may be partitionsen th

Definition 1: (Handoff):the operation with which the MB netvyork du.e 0 Improper h.andoffs. In the long term, since the
MB is mobile, MB is very likely to move over the partitioned
changes the anchor node from one node to another.

Definition 2: (Routing connected)a network where the regions eventually. This will, in turn, fix the problem and
. X : nable the buffered packets to be relayed to the MB.
next links of nodes form a spanning routing tree rooted &

MB. C. Handoff Connectivity

Definition 3: (Proper handoffA handoff is prop(.arwhen: The correctness of DTR depends on the success of handoffs,
1) Both the old and new anchor nodes receive the MBighich is in turn imposed by the geometry and topology of the

anchor broadcast _ network. Here, we focus on planar deployments and capture
2) Both the old and new anchor nodes can reliably corfhese required geometric and topological properties.
municate with each other In data spider, MB invariantly maintains its closest node

Theorem 1:If all handoffs are proper, an iteration of Al-as the anchor node. A useful abstraction for capturing this
gorithm[1 starting from a routing connected network alwaysroperty is the Voronoi diagram of WSN nodes based on
results in another routing connected network. their geographical locations. When the MB is in one of the

Proof: Consider tree reconfiguration on a graph = \Voronoi cells, its closest node, by definition, is the WSN node
(V,E) whereu,v € V correspond to the nodes ard= corresponding to that Voronoi cell. Thus, as long as MB stays
(u,v) € E correspond to the reliable communication linkén that Voronoi cell, the anchor node is unchanged.
between the nodes. We usdo denote the old anchor and With this anchor node definition, we identify the require-
to denote the new anchor. In the base case, when there issments for having proper handoffs as follows. Ll2tdenote a
handoff, » = r, and the theorem holds vacuously. We nexioint in the deployment area aft be the set of nodes which
consider the case wheré # r. are closest td”. So, if P falls inside a Voronoi cell, theip

The iteration of Algorithm[IlL entails an anchor broadcasbnsists of a single node, the WSN node corresponding to
received by a set of nodeB C V. Let S C R be the set that Voronoi cell. If P falls on a Voronoi cell boundary, then
of nodes that actually change theiextlinks as a result of Vp consists of the neighboring (i.e., adjacent) nodes for this
executing AlgorithmL. Since proper handoffs are assumedyronoi cell boundary.



(a) Before Broadcast (b) Broadcast (c) After Broadcast

Fig. 1. Demonstration of DTR as MB moves from one anchor to aroffhe touched edges are gray edges in (b) and actual charegbsld edges in (c).

A WSN deployment is said to be\-general handoff
connectedwhen all pointsP satisfy:

1) For all nodes: € V2, n can reliably communicate with
a node place aP.

2) For all nodesn,m € V2, n and m can reliably
communicate with each other.

D. Extensions to DTR

Handoff connectivity addresses only the immediate neigh-
borhood of the anchor node. Broadcasts on the other hand
can be made stronger with better transmitters on the MB.
Moreover, even WSN nodes can receive broadcasts from non-

. . . . R neighboring Voronoi cells. These receptions can be utllize
Fig. 2. The interaction of Voronoi cells and communicationuiegments. .
Shaded region shows possible locations of MB at next updatnvit starts |mpr0Ve.the perfqrmance of DTR as follows_ -
with anchor node in the center of shaded region. Circle atahe shaded  For this operation, nodes depend on neighborhood informa-
region is the approximated reliable communication range. i&ligat) dashed tion about their neighbors That is. nodes share neighlumkho
lines correspond to neighbors where direct handoff is nesibte. Red(dark) . . . . L !
dashed lines correspond to neighbors where no handoff witpes information with their neighbors, so tha_t they can create-tw
hop routes to the anchor node when singlehop routes are not
Wi Il 2 WSN debl rhandoff tedwh I possible. If the anchor is not an immediate neighbor of the

e ;a_ "’:j | eploymeriando .connece when all node, the node chooses its neighbor which is an immediate
points P> in deployment region satisfy: _ _neighbor of the anchor. In case there are multiple neighbors

1) For all nodes: € Vp, n can reliably communicate with satisfying this condition, the closest one to the anchor is

~

a node placed ab. _ chosen as the next node. As long as the chosen intermediate
2) For all nodesn,m € Vp, n and m can reliably nodes also received the anchor broadcast this operation ex-
communicate with each other. tends the handoff connectivity. We call this operatindirect

In other words, in a handoff connected network (1) the MBandoff We show neighbor nodes where only indirect handoff
sitting on a Voronoi cell boundary can communicate with this possible with green(light) edges in Figlre 2. Non-anchor
nodes in the adjacent Voronoi cells, and (2) any pair of Voronnodes also benefit from our indirect handoff extension, as is

neighbors can communicate with each other. the case for nodes andb in Figure[1.
The above handoff connectivity definition is valid when
the updates of the MB are continuous. Since we use dis- . MB A LGORITHM

crete/periodic anchor broadcasts, we extend this definfto The MB algorithm complements synergizes with the DTR
our model. Leth = vpg * Typaate b€ the maximum distance algorithm to achieve efficient data collection. We preséset t
the MB can travel between two location updates. We nolasic MB algorithm in Algorithni2. MB ensures two things:
require the anchor node to be able to receive messages fror(il) The MB broadcasts an anchor message announcing
the MB when it is at most\ away from the Voronoi cell. the closest node to itself periodically.This enables DTR
Moreover, for proper handoff, any cell that falls to thisiceg to track MB correctly and update the tree accordingly so
should be in communication range. Figlite 2 demonstrates tBiTR can keep delivering data packets to the MB. In order to
requirement. detect and announce anchor changes properly, the MB should
To generalize the handoff region we extend the set of neardstermine the closest node to itself. To this end, we require
nodesVp. V2 to be the set of nodes which are at mastd,,;,, that MB knows its location as well as the locations of nodes
away from pointP whered,,;, is the minimum distance to in the network. This is achievable by equipping the MB with a
any node in network fronP. Thus, usingV’p we generalize GPS and the coordinates of the WSN nodes. Having a GPS on
handoff connectivitys follows: the MB is relatively cheap, and the MB can also utilize its GPS



Algorithm 2 MB Algorithm
1: loop
2:  listen and update RecentPackets
if count(RecentPackets) 0 then
target«— getTarget()
else
target+— getRandomTarget()
end if
navigate to target
anchor«+ closestNodeTo(position)
10:  broadcast anchor message
11: end loop

e N A R ®

Fig. 3. A screenshot of the simulator

to locate and collect the nodes after deployment. (Altéraat
localization techniques based on Kalman filtering and RS§4yge number of static nodes and a small number of mobile
based determination of an approximately-closest node mgydes. In our simulator, we also updated the radio model of
also be considered.) JProwler to reflect the mobility of the mobile nodes, while
(2) The MB relocates to follow data generation in a best- keeping the static nodes unchanged.
effort manner. This relocation enables the effective length | order to address energy efficiency questions we keep
of data relaying paths in DTR to be only a couple of hopgack of energy use in our simulation. Our simulator uses
improving both the reliability and the lifetime of the datacgpma with BMAC low-power-listening [10] for the MAC
collection. In order to track the data generation in the 0ekw |aver and the associated energy model to calculate theenerg
MB utilizes the recent data packets that DTR routes to itse;jged in each node. In our simulation we obtain fine grain
to decide where to move to next. MB defaults to a randofRformation about packet arrivals and noise and replace the
walk when there are no packets since this might indicatea@proximate values used in [10] with these values to better
disconnection of the network. In such a case, random wa pture the energy use in each sensor node. We ignore the
may help the MB to repair the partitioning and re-establish gnergy cost of computation, but since our algorithms ar rel
connected network where DTR can start delivering the dq;@e|y simple we argue that the energy cost of the computatio
generated to the MB. Otherwise, MB uses thetTarget() specific to algorithm is negligible.
function to decide how to relocate based on the recentlyoyr simulator is parametrized extensively, so it is su@abl
received packets. We propose two heuristics for this foncti for modeling and investigating other MB algorithms quickly
trailSource. Here, the MB inspects the source field of thesigure[3 shows a screenshot of our simulator. Our simulator i
data packets and sets the relocation target to be the Soyggilable af http://www.cse.buffalo.edu/ubicomp/daiasr/.
of the packet generation (median of the source locations).simulation setup. We ran each set of simulations for 72
Although it seems like this is a direct approach and shoulgmylation hours. Each simulation includes an initial iheig
not lead to much problems, we show in Secfion IV that wheshrhood discovery and initial flooding phase. Neighborhood
the network is not regular (has holes in it) trailSource &agjiscovery phase reduces the disconnections and message los
to many improper handoffs and suffers severe performangg reliable links are identified and each node discovers its

pena!ties. _ neighbors. This neighborhood information is later utitize
trailFlow. Here, the MB tries to go to the center of packeberforming indirect handoffs.

flow. In contrast to trailSource that calculates the centelata A5 jn [9], we model the data generation activity in the
generation, trailFlow calculates the center of data fodvay onvironment with a moving disc to denote the ROI. All WSN
from the singlehop neighbors of the MB. Since packet fofoges covered by this disc generate data with a predetedmine
warding is done over reliable edges, trailFlow directs th8 Mate. The nodes then try to forward this data to the MB if
to avoid the holes in the network implicitly (as a side bem,eﬁtthey have a valichextlink. A node buffers data if the channel
so even in irregular and sparse networks trailFlow ensur@spysy, or if it does not have a valigext link—which may
successful handoffs. Our simulation results in SedtidnHv\s happen after an improper handoff. We rely on work in [13] to
that trailFlow consistently performs the best comparech® tgenerate realistic human/animal like mobility patternstfe
other heuristics. ROI. Our implementation of the model is faithful to the model
with minor modifications to scale the deployment region.

We set the simulation area as a 160m by 120m rectangular
A. Setup region. Unless otherwise stated we work with 300 mica2 nodes

Simulator. We built our simulator on top of the JProwlerin this region. We constrain the MB to this region and assume
simulator [12] and implemented support for mobility forthat there are no significant obstacles to obstruct mobility
JProwler. Our implementation is heavily optimized towardaithin the region. Our mobility simulation is intentiongall

IV. SIMULATION
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kept simple. We do not model problems in relocation such #se distance between anchor nodes would be decreasing, we
mechanics of maneuvering, localization, and obstacledavoexpect better connectivity of the network and reduced numbe
ance in order to concentrate on the networking aspects of tfeimproper handoffs. Increased density also correspoads t
problem. increased data rates and more contention reducing thiendet
Protocols we compare with. We are primarily interested of the network. Figurgl4 presents this axis of the investgat
in evaluating the data spider system which consists of DT\Re observe very high latencies when node density is low. This
and the MB algorithms, trailSource and trailFlow, desalibeis due to frequent disconnections. Packets are bufferechwhe
in Sectiong 1l andTll. For comparison, we also considerehrénandoffs can not be completed successfully and they are late
other protocols, namelgtatic, random andsalmon retrieved on an opportunistic basis, but this results irhhig
In the static protocol, the basestation is static and istémta average latencies. Data spider heuristieslFlow and trail-
in the center of the network. The data is routed to the bas8durceconsistently outperform other protocols with respect to
using a convergecast tree rooted at the basestation. As peeket deliveries and network lifetime. An interestingutes
discussed in the Introduction this scheme is prone to htgspof this experiment is to show that even random mobility leads
around the basestation, and also results in long multihtigspato better delivery ratios than the static when the density is
for data relaying. critically low. Random mobility leads to worse delivery icet
The random protocol is similar to trailSource and trailFlowhen the density increases, yet it still leads to longetitifes
in that it also uses the DTR protocol to reconfigure thian static.
data collection tree as the MB relocates. However, as forIndirect handoff. Here we try to quantify the performance
the relocation algorithm, instead of trying to follow thetala improvement due the indirect handoff extension. We test thi
generation, the random protocol prescribes relocatingiBe through experiments with trailFlow. Indirect handoff piges
to a random location all the time. While this protocol avoidbetter average latencies, and upsf@ improvement in packet
the hotspot issue (since it uses an MB and DTR), it is promelivery rates. The benefit of indirect handoff is most digni
to long multihop paths for data relaying as it does not followant in expected lifetime which is improved B9%.
the data generation. Speed of region of interest (ROI). The ability to track ROI
Salmon protocol uses the same MB algorithm we used i a significant advantage for data spider, but the perfocsan
our previous work, data salmon [9]. Salmon does not use DR tracking is affected by the speed of ROI. In our experiraent
and constrains the relocation of the MB to occur only alondepicted in Figurd16 we investigate the effect of speed of
the edges of the existing tree. In other words, the existieg t ROI to the performance. Since we use a fixed speed for MB,
is not modified, except for the relocation of the root of thincreasing the speed of ROl makes tracking the data more
tree from one node to one of the neighboring nodes (whichdgficult. As expected static and random heuristics are not
achieved by flipping the direction of the edge between thes#ected by the ROI speed. We observe significant increase in
two nodes). In this scheme, the MB chooses the neighbarerage delay itrailSourceheuristic. This increase is related
that forwards the majority of the traffic to relocate to. Ago increased number of bad handoffs, which leads to parstio
our simulation results exhibit, this scheme has problentk wiof network. trailFlow avoids this problem as packets follow
reliability (since only one edge is modified, this consttit the network topology and the MB follows the packets. Even
a risk of single point of failure) and cannot follow the datavith increased ROI speed, data spider algorithm improves th
generation successfully (since the MB relocation is retstd lifetime of network up to 3 times over static basestation.
to the existing tree structure, MB needs take long detoueswh Number of ROI. We next consider the effects of increasing
the ROI leaves the current subtree for another subtree). number of ROIs on the performance. As these ROIs move
Metrics. We concentrate on three metrics to measufadependently from each other, the optimal location of MB
performance of the system. The latency metric measures tirguld vary significantly and the static MB starts to become a
average delay in packet deliveries, from their generatime t better alternative. Our simulation results are shown irufeg.
to their arrival to MB. The second metric, packet deliveriera We observe the effect of disconnectiongrmilSourceheuristic
is the ratio of the delivered packets to MB versus the numberia this experiment as well. The difference between data
packets generated. The final metric is the estimated litetin delivery rates decrease as data spider heuristics can lfmt fo
the network. We define the lifetime to be the time passed urail the ROIs at the same time. Lifetime of the network is also
the first node failure due to battery depletion in the networkiversely affected as the MB is constrained to a smalleioregi
By utilizing the fine-grained energy-use information fromro trying to follow all ROIs simultaneously. With 4 ROIS, the
simulation and the total energy stored in standard AA biatter performance of data spider is similar to random MB in terms of

we arrive to our estimated lifetime figures. network lifetime, which is still more thah00% improvement
over the static basestation.
B. Results Locality of data generation. Locality of data generation is

Here we present our simulation results for the metriégmportant for the performance of data spider. In the previou
described above under the following parameter categories.set of experiments we explored this a little by increasirg th

Node density. We first investigate the effect of node densityhwumber of ROIs. Here we quantify data locality by removing
on the performance. As the number of nodes increase, siike dependency of data generation to the ROI. In this setup,
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each node generates a random number and if this numbeofithe MB and re-weaves/mends the original tree locally to
less than the data locality parameter, the packet is gatkerataintain an always connected network rooted at the MB. The
in the ROI, otherwise the packet is generated in a randdv#B component of data spider relies on the data delivered to
node chosen uniformly over the network. Thus, a data lgcalit by DTR and complements DTR by trailing towards the data
of 1 corresponds to the regular data generation and a dgemeration. This, in turn, reduces the number of hops data
locality of O corresponds to totally uncorrelated (unifdym needs to be relayed to the MB and boosts the reliability and
random) data generation. Figure 8 summarizes the resultdifdtime of DTR. While both protocols are very simple and
this investigation. In general we observe that decreasmditp lightweight, combined they lead to significant improvensent
leads to decreased performance for data spider in all thiaethe reliability and lifetime of data collection, espdbia
metrics. Even when one fifth of the data is generated withfar monitoring applications with highly spatiotemporaltaa
the ROI, data spider tends to follow this correlated portiogeneration.
of data generation, which results in reduced performance adVe provided extensive simulation results where we evalu-
the rest of the data is generated uniformly. In a sense, tlaited the latency, cost, and network lifetime metrics of taead
kind of data generation tricks MB to suboptimal locationspider system under a wide number of varying parameters,
One of the most interesting results of this experiment is tld compared and contrasted data spider with other systems.
relatively high performance when there is no correlation We also presented analytical results about data spider and
data. This result stems from the reduced congestion in tfeemulated the handoff connectivity requirements needed f
network when data is generated uniformly in the network. lperforming a proper handoff of the MB.
that case, MB stays close to the center of the area as dataAlthough we focused on the data collection problem, our
generation is uniform, but lifetime and delivery ratios at#l  data spider framework readily applies also to the pursuer-
better than static basestation, as in data spider the MB @ader tracking problem [14] by treating the ROI as the evade
wander around leading to better load balancing. and the MB as the pursuer. Our experiments here showed
Frequency of anchor broadcasts. An important trade off that the trail-flow algorithm for the MB managed to impliyitl
in data spider is the choice of anchor broadcast frequenayute the MB around the holes in the network. In future work
Increasing the number of anchor broadcasts allows for sparge will investigate other algorithms that may result in dani
deployments but also results in contention with other taffidesirable properties for tracking. Our experiments alsweld
We investigate the effect of MB anchor broadcasts in Figlire at, in the data spider system, multiple MBs coexistedlyice
Average delay consistently improves with increased numben the same network to trail multiple ROIs without any exiplic
of anchor broadcasts but other metrics show an optimadordination or cooperation. In future work we will invesgte
value around 0.01 hz which is the value used in all othepordination and cooperation mechanisms of multiple MBs fo

experiments. more efficient evader tracking.
Multiple MBs. FigurelT showed that increasing the number
of ROIs reduced the ability of data spider to track them. REFERENCES

Here we show how the increased number of ROIs are bett@lj m. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. Sukhatme,
handled with multiple MBs. We test the performance of data W. Kaiser, M. Hansen, G. Pottie, M. Srivastava, and D. EstiCall

; ; ; ; ; ; ; and response: experiments in sampling the environment3enSys
splder with muIt|pIe MBs In FlgurE‘lO. As we mentioned in '04: Proceedings of the 2nd international conference on Edued

the Introduction, data spider extends readily to allow iplgt networked sensor systen2004, pp. 25-38.
MBs to share the same network without any need to change tf@ R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culléin“analysis

; i ; ; of a large scale habitat monitoring applicatiodi Proceedings of
DTR or MB algorithms. In this experiment neither the network the Second ACM Conference on Embedded Networked Sensemsyst

nor the MBs are aware of the multiple MBs. However, we still  (sensys)2004.
observe an emergent cooperation and division of laborgadi [3] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, Vaikl

; i i V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y.-R. Choi, T. Herm&h,S.
to improved performance. MBs partition the network since Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and M. Miyashit

each node only has one next node, moreover these partitions « jine in the sand: A wireless sensor network for target dea,
dynamically change over time due to MB broadcasts. Even classification, and tracking,Computer Networks (Elsevieryol. 46,
if all MBs converge to same anchor, the competition for data, N- 5 Pp. 605-634, 2004.

. . . 4] A. Arora and et. al., “Exscal: Elements of an extreme scaieless
allows MBs to d“/.e'fge and Cover_d'ﬁerem RQIS. We Ot_)tame sensor network,11th IEEE International Conference on Embedded and
these very promising results with data spider despite lack Real-Time Computing Systems and Applicati@@05. _
of explicit coordination. An interesting research questie ~ [51 R- C. Shah, S. Roy, S. Jain, and W. Brunette, *Data mules: afug!

. . - . a three-tier architecture for sparse sensor netwofk®teedings of the
how to coordinate MBs in a cooperative manner to improve st |EEE International Workshop on Sensor Network Profscand

performance even further. Applications pp. 30—41, 2003.
[6] A. Somasundara, A. Ramamoorthy, and M. Srivastava, “Madliggnent
V. CONCLUDING REMARKS scheduling for efficient data collection in wireless sensetworks

. o . with dynamic deadlines,” irRTSS '04: Proceedings of the 25th IEEE
We presented an efficient holistic MB-based data collection International Real-Time Systems Symposium (RTSS08¥, pp. 296—

system, data spider, which consists of two subsystems. The 305 N o
7] Y. Gu, D. Bozdag, E. Ekici, F. Ozguner, and C. Lee, “Patiing based

WSN componenF of data spider is a vgry lightweight dynami mobile element scheduling in wireless sensor netwollEFE SECON
tree reconfiguration protocol, DTR, which follows the laoat pp. 386-395, 2005.



Average Latency (Seconds) Average Latency (Seconds)

Average Latency (Seconds)

(8]

(9]

[10]

[11]

[12]

250 T T T 1 T T T T 600 T T T T
trailFlow —+— I
trailSource — _ 550
200 | salmon ---*--- 0.8 F omopooe 4 4 L
random & % i % & % * h § 500
static 214 o 450
150 | - Fenl 6 F i
50 g 0.6 % 400 -
E =
5 L
100 F . % 0.4 ] ® > g Bsa
a % trailFlow —+— 5 300 k _~trailFlow i ii
b 5 1 & trailSource g 250 L _~"trailSource -]
50 | — e S 02 salmon % 5 salmon -~ %
_ random & 200 + - random-~"e o
~ static SR .--—€hatic
0 1 2 2 0 1 1 1 1 150 x* x 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Ratio of Local Data Ratio of Local Data Ratio of Local Data
Fig. 8. Effect of data locality on performance.
18000 L B NN B | 1 HL A I L R | 650 L L B AL E |
% trailFlow —+— /ﬁ*******#m,,,w 600 | _trailFlow —+— |
16000 trailSource 7 P . /{raﬂSourrce
0 - / oo A
14000 random ---%-- | ° 0.8 | ¥// . - 2 550 / randq\m *
< *. A 500 \ -
12000 1 < * o 450 | \ .
2 06 5 o e \
10000 ‘ . < B g = 400 F \ ]
8000 4 B8 X S ss0} PR
- 04 ’ - o 300 | S \ |
6000 % 1 £ g S xSk * A
3 , @ 250 T
4000 ‘ 1 O 02y trailFlow —+— g 200 | \
2000 % B trailSource 150 |- A
— Ko S random ------ \
O 1 el el S 1y 0 1 1 1 100 1 1 1 [ES
10 102 107 10° 10® 102 100 10° 10® 102 100 10°
Anchor Update Frequency (Hz) Anchor Update Frequency (Hz) Anchor Update Frequency (Hz)
Fig. 9. Effect of MB anchor broadcasts on performance.
250 T T T T 1 —] 600 T T T T T
trailFlow —— |
trailSource g b __ 550 o
200 | salmon ------ 0.8 - g 2 L _— 4
random - '% i N g‘ 500
static 14 e S 450 | 4
150 |+ . > 06 9 .
g £ 00} o .
= 9]
] =
- = -
100 - . % 04 | 103 350
¥ trailFlow —+— 5 300 trailFlow ——+— ~
IS trailSource a L trailSourge <.k
50 7 & o02r salmon ---*--- g 250 P salmon =%
~_ & random & 200 .7 random &
e mm— static static
0 1 e 1 L 1 — 0 1 1 1 1 150 1 1 1 1 1
1 15 2 25 3 35 4 1 15 2 25 3 35 4 1 15 2 25 3 3.5 4
Number of Basestations Number of Basestations Number of Basestations
Fig. 10. Effect of number of MBs on performance with 4 independROls.
S. Basagni, A. Carosi, E. Melachrinoudis, C. PetriolndaZ. Wang, networks,”IEEE Aerospace Conferencpp. 255-267, March 2003.
“A new milp formulation and distributed protocols for wiregesensor [13] W. jen Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Mbidg time-
networks lifetime maximization,” ifCommunications, 2006. ICC '06. variant user mobility in wireless mobile networks,” INFOCOM 2007.
IEEE International Conference owol. 8, June 2006, pp. 3517-3524. 26th IEEE International Conference on Computer Commuiooat
M. Demirbas, O. Soysal, and A. S. Tosun, “Data salmon: A dye®o- IEEE, May 2007, pp. 758-766.

bile basestation protocol for efficient data collection iteless sensor [14] M. Demirbas, A. Arora, and M. Gouda, “A pursuer-evademega
networks,”IEEE International Conference on Distributed Computing in ~ for sensor networks,Proceedings of the Sixth Symposium on Self-
Sensor Systems (DCOS8p. 267—280, 2007.
J. Polastre, J. Hill, and D. Culler, “Versatile low powemedia access
for wireless sensor networks,” iBenSys '04: Proceedings of the 2nd
international conference on Embedded networked sensterag2004,
pp. 95-107.
W. Zhang and G. Cao, “Dctc: Dynamic convoy tree-basethboration
for target tracking in sensor network$EEE Transactions on Wireless
Communicationvol. 3, no. 5, pp. 1689-1701, 2004.
G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi, “Simutat-based
optimization of communication protocols for large-scale Vess sensor

Stabilizing Systems(SSS’0gp. 1-16, June 2003.



	Introduction
	Dynamic Tree Reconfiguration
	DTR Algorithm
	Correctness
	Handoff Connectivity
	Extensions to DTR

	MB Algorithm
	Simulation
	Setup
	Results

	Concluding Remarks
	References

