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Abstract

For datacenter applications that require tight synchroniza-
tion, transactions are commonly employed for achieving
concurrency while preserving correctness. Unfortunately,
distributed transactions are hard to scale due to the de-
centralized lock acquisition and coordination protocols
they employ. In this paper, we show that it is possible
to achieve scalability for distributed transactions by using
a lock broker architecture, and present the design and de-
velopment of such a framework, called PANOPTICON.

Panopticon achieves scalability by divorcing locks from
the data items and striving to improve lock access local-
ity. A lock can be hosted at the lock broker or at a dif-
ferent server than the server that hosts the corresponding
data item. The lock broker mediates the access to data
shared across servers by migrating the associated locks
like tokens, and in the process gets to learn about the ac-
cess patterns of transactions. We show that the broker can
drastically improve the lock access locality and, hence,
the performance of distributed transactions by employing
simple rules.

Our experiments show that Panopticon performed sig-
nificantly better than distributed transactions as the the
number of data items and number of servers involved in
transactions increase. Moreover, as the history locality
(the probability of using the same objects in consecutive
transactions) increase, Panopticon’s lock migration strate-
gies improved lock-access locality and resulted in signifi-
cantly better performance.

1 Introduction

Concurrent execution is a big challenge for distributed
systems programming and datacenter computing in par-
ticular. For embarrassingly parallel data processing appli-
cations, concurrency is boosted and scalability is achieved
by adding more servers, as in MapReduce [11]. How-

ever, for applications that require tighter synchroniza-
tion, such as large-scale graph processing [13, 20], dis-
tributed scientific simulations [4], and backends of large-
scale web-services, boosting concurrency in an uncon-
trolled/uncoordinated manner wreaks safety violations. In
these applications, concurrent execution needs to be coor-
dinated to prevent latent race conditions and synchroniza-
tion bugs.

Using locking primitives and employing transactions
are the two most common techniques to deal with tight
synchronization requirements [5, 16].  Unfortunately,
locking is manual and hence is error-prone. If the devel-
oper misses to place a lock where needed, safety is vio-
lated —these kind of bugs may be latent heisenbugs that
are hard to debug. On the other hand, if the developer in-
serts unneeded locks, the performance of the system suf-
fers due to the unnecessary synchronizations.

Transactions provide a nice abstraction to write code,
providing serializability guarantees while allowing con-
currency under the hood. Since transactions are easy to
use, they are employed by modern distributed systems in-
cluding Google Spanner [8], Google Megastore [3], Mi-
crosoft Azure [17], and AWS RDS [2]. Unfortunately,
transactions have gained a reputation for being unscalable.
We identify the following two issues as main problems
with the scalability of distributed transactions:

e Distributed transactions waste time in coordination.
When several data items need to be locked at the
same time, test-and-set approaches are inapplicable,
and distributed coordination for setting locks (such
as two phase locking and two phase commit) do not
scale as their costs grow quickly with respect to the
number of data items and servers involved in the
transaction.

e There is a big latency difference between accessing a
server-local item versus item that is stored across the
cluster, however, modern datacenter computing sys-
tems focus on consistent hashing and load-balancing



of data to the servers and ignore locality when as-
signing data for storage. When locks are coupled
and tied to the data, this penalizes transaction la-
tencies severely, especially in the lock acquisition
phase. Even after several repetitions of the same
transaction, each time the remote lock-access costs
are paid again and again.

In this paper we argue that it is possible to address
the above problems and achieve a scalable transactional
system. We propose a lock broker architecture, called
PANOPTICON. Keeping a centralized lock broker elim-
inates the complexity and cost of distributed transaction
solutions, and enables the lock broker to see all transac-
tion access patterns so that the broker can improve lock
access locality of transactions by migrating locks when
appropriate.

Figure 1: Panopticon lock broker

Differing from centralized lock service solutions such
as Chubby [6] or Zookeeper [16], Panopticon does not
keep all the locks in the broker. Dealing with large scale
data, such as in Spanner [8], it is impossible to fit all the
locks in the broker and have all centralized locking. And,
even when that is possible, it is not desirable since it kills
all opportunities for local access: None of the servers can
have local transactions in that setup. Panopticon employs
the broker as a cache for locks that receive across-server
access. The broker migrates the locks that get accesses
mostly from one server to that server to improves lock-
access locality further.

1.1 Overview of Panopticon’s distributed
transactions

Panopticon maintains a lock for every data item (i.e,
record, key value tuple) stored in the system. By de-
fault, the lock is kept where the data is, and this is advan-
tageous for improving lock-locality and enabling server-
local transactions without the need for contacting the bro-
ker. The server contacts the lock broker only if data at
other servers need to be accessed as part of a transaction.

The lock broker coordinates across-server sharing of
the data in distributed transactions by migrating the cor-
responding locks like tokens. A server can request a lock
anytime from the broker, and only from the broker. The
broker gives the locks in a first-come first-serve manner. If
the requested locks are at the broker, the broker responds
immediately. Otherwise, the broker requests the locks
from the corresponding servers first and forwards them
to the requester when they are made available. The bro-
ker can request a lock back anytime from a server, and the
server complies. (If the server is currently using the lock
in an executing transaction, the server returns the lock af-
ter the transaction completes.)

As the centralized authority for mediating access to
data, the broker learns about the access patterns of trans-
actions at runtime and manages the migration of locks
to servers in a way that improves lock access locality.
The lock broker, however, is oblivious to the state of the
transactions, and the servers are the ultimate transaction
managers. Transactions are initiated and executed by the
servers distributedly after checking that all the locks are
available at the server.

When transactions involve multiple data items, this
centralized lock broker solution gains an edge over the
traditional distributed transaction processing. Traditional
distributed transactions employ two phase locking to pre-
vent deadlocks, which requires that the server initiating
the transaction to contact the other servers for locks in
increasing order of locks. Instead of contacting other
servers trying to acquire locks in increasing order in a se-
rial manner, it is more efficient to go to the broker and
test/set all the locks at once. In Panopticon, the lock re-
quest is sent at once to the broker, and the broker takes
care of deadlock prevention.

1.2 Contributions

Panopticon proposes a novel approach to distributed trans-
action processing. Panopticon achieves scalability by di-
vorcing locks from the data items and employing lock
caching at the broker and lock migration to servers to im-
prove lock access locality. We present Panopticon’s novel



lock broker architecture in Section 2. There we detail the
broker operations, lock migration rules, and optimizations
such as batch locking, and lazy unlocking.

We develop and build Panopticon leveraging the Hazel-
cast [15] platform, a popular lightweight open-source in-
memory data grid for Java. Hazelcast uses traditional
distributed transaction processing with decentralized two
phase locking protocol. We build on Hazelcast to imple-
ment the Panopticon lock broker architecture. We present
our implementation of Panopticon in Section 3 and then
use this implementation to compare and contrast Panop-
ticon’s improvements over Hazelcast distributed transac-
tion processing in Section 4.

In our experiments we identify under what conditions
(e.g., how many data items per transaction, contention
rate, number of servers, etc.) the Panopticon lock bro-
ker solution provides the most benefits. We also inves-
tigate tradeoffs of lock caching and migration strategies
under varying workload characteristics. Using these ob-
servations, we devise efficient lock caching and migration
strategies between the broker and the servers. Our ex-
periments show that Panopticon performed significantly
better than distributed transactions as the the number of
data items and number of servers involved in transactions
increase. Moreover, as the history locality (the proba-
bility of using the same objects in consecutive transac-
tions) increase, Panopticon’s lock migration strategies im-
proved lock-access locality and resulted in significantly
better performance.

We discuss how Panopticon can be extended to across
datacenter deployments using hierarchical composition in
Section 5. We compare and contrast Panopticon with
other work on distributed transaction processing in Sec-
tion 6.

2 Panopticon Lock Broker

2.1 Tradeoffs and lock migration

As we discussed earlier, maintaining all the locks stored
at the broker is not desirable because it kills all the lock-
access locality for the servers. On the other extreme, if we
do not keep any locks in the broker, and make the servers
keep the locks, there is a different disadvantage associ-
ated with that: If a server w needs one of the locks held
by another server y, then it suffers extra delay for lock
acquisition: Firstly, w sends a lock request to the broker.
Then the broker will forward this request to y. Finally
when the broker gets the lock from y, it forwards the lock
o w.

Our solution strives to find the sweet point in this trade-

off spectrum. We notice that there can be three types of
locks hosted at the master:

1. locks that receive across-server accesses,
2. locks that receive repetitive access from same server,
3. locks that receive no access for a long-time.

It is best to host type 1 locks (locks that keep receiving
across-server accesses) in the lock broker. And it is best
to assign the type 2 locks to the requesting server to avoid
the overheads of repetitive requests from that server to the
broker. We discuss the determination of the sweet point in
the tradeoff between type I and type 2 locks next. !

In Panopticon, the broker gets to observe all transaction
access patterns at runtime so it can differentiate between
type 1 and type 2 locks given some rules for cut points.
We use the following rule of thumb for declaring a lock
to be of fype 2 and migrating that lock to a server: If two
consecutive requests for a given lock [/ (held at the broker)
comes from the same server w, then the broker migrates
lock [ to server w. From that point on w treats [ as its local
lock, the lock locality of w is improved with this, since w
does not need to contact the broker for [ again.

Note that this is not a permanent assignment. Later if
another server y requests [, the broker migrates [ back to
itself, and gives y the lock. At this point, [ is treated again
as a type I lock. When y is done with [, [ is continued
to be hosted at the broker (that is, until the 2-consecutive
rule is satisfied and [ is migrated to another server).

2.2 Transaction execution

The broker is stateless about the transactions. The broker
maintains per lock information, not per transaction infor-
mation. The servers are the transaction managers and they
maintain the transaction information.

When a server initiates a transaction, it requests locks
in batch as we explain in the next subsection. The broker
coordinates assigning/delivering of the requested locks in
a first come first serve basis. And when processing a
lock request for a transaction, the broker assigns the locks
in an increasing order to prevent deadlocks. The broker
sorts the lock requests to form a total order based on the
data item ID. When processing in this increasing order of
locks, if the broker holds the lock, it forwards it to the re-
questing server. If the broker does not have the lock, it
adds this server’s name to the request-queue of the lock,

For space-saving at the master, we can employ least recently used
(LRU) policy to expel type 3 locks (locks that have not seen an access
for a long-time) back to the original host (the server that hosts the corre-
sponding data item).



and forwards the lock requests to the server that holds the
lock. When the lock becomes available, the broker will
forward this lock to the server at the head of the queue
maintained for that lock.

The server, as the transaction manager, is also respon-
sible for determining when to enter the transaction. When
the server checks and finds that it has gotten all the locks,
it starts the transaction and authoritatively-owns those
locks, deferring the requests for these locks until the trans-
action ends. Within the time frame of initiating the trans-
action and entering the transaction, the server may have
some of the locks but it may not authoritatively-own those
locks. For example, if a server requires locks of multi-
ple data items {ly, 12,13, ..,1,,} for a transaction, it can-
not authoritatively-own [; until all data items /; such that
l; < l; are locked in the current transaction. If the server
is waiting for lock I3 and has [q,ls,1l4, then Iy is not
authoritatively-owned by the server: if the broker asks 4,
the server will have to return {4 to the broker. On the other
hand, /1, [» are authoritatively-owned by the server. This
way of managing the locks guarantees that livelocks as
well as deadlocks are avoided.

2.3 Batch locking and lazy unlocking

In Hazelcast transactions, two phase locking is employed
to prevent deadlocks. Two phase locking requires that the
server initiating the transaction needs to contact the other
servers for locks in increasing order of locks. The server
cannot contact another server until the current requested
lock is acquired. Therefore, if the transaction needs to get
the locks of multiple data items, this forces lock acquisi-
tion to be serial in nature and causes a significant increase
in transaction time.

In Panopticon the servers are not prone to this problem.
The servers can make the requests for all locks in batch
and at once, because the broker takes care of deadlock
prevention. The request is sent at once, but the broker pro-
cesses the requested locks in the increasing order of lock
IDs, and assigns the server the locks or adds the server to
the wait queues, as we discussed above. By employing
batch requests to the broker, Panopticon avoids incremen-
tal lock requests in Hazelcast distributed transactions and
gains a big advantage in transaction execution time.

After a transaction is finished, the server needs to un-
lock the data items, which means returning the locks back
to the broker. In this phase we propose an optimization
where the server lazy unlocks the locks. Lazy unlocking
means that the locks are released locally, but not trans-
mitted back to broker until 4 time elapses, where d is em-
pirically determined. Lazy unlocking provides efficiency

benefits for cases when the server needs to access the
same data items used in the terminated transaction imme-
diately in the next transaction. Recall that if the same lock
is accessed by the same server two times in a row, that
lock is migrated from the broker to that server. And the
lazy unlock provides benefits between the first and second
consecutive requests of a lock by the server. Instead of re-
turning the lock back to the broker only to request it back
afterwards, the lazy unlock mechanism provides a small
grace period at the server to avoid that inefficiency. This
is optimization verifiably safe because if lazy-unlocked
data-lock got requested, it is given back to the broker.

3 Implementation

To implement centralized locking in Hazelcast, we edited
the Hazelcast source code for modifying the automated
locking of variables in transactions. In this modified
Hazelcast version, we introduced the lockAll() and unlock-
All() methods for contacting the broker. Hazelcast does
not differentiate between read-locks and write-locks and
use one uniform lock for transaction items, and in Panop-
ticon we also follow that design.

3.1 Broker actions and data structures

All instances in a Hazelcast cluster have unique IDs, and
we set the instance with ID O (i.e., denoted as the oldest
node and special node in Hazelcast) as the broker and the
other instances are servers. The broker does not perform
computation and responsible solely for lock management.
It has a lockTable to keep the current owner for each data
item. In addition, it has a requestTable that keeps track of
the requests for each lock. When a lock request arrives, if
the lock is already available at the broker, the broker gives
the lock to the requester. If not, it inserts the requester ID
to the requestTable and forwards a request to get the lock
from the hosting server (only if a request has not been sent
before). If there are multiple requests for a data item, the
requestTable keeps a FIFO queue for each data item. The
broker also has a leaseTable to keep track of which locks
it has migrated to which servers.

3.2 Server actions and data structures

A server keeps the list of locks it own in a list called lock-
List2  Whenever the server needs a new lock, it first
checks the lockList and send a lock request to the bro-
ker only if it does not find the lock in this list. In addition
the server keeps a boolean requestList to keep track of the



list of requests for the locks it has. Since the lock ex-
change occurs only between the broker and a server, the
servers do not need to know which server requested the
lock. Whenever a request comes from the broker, they
just hand over the lock to the broker if it is available.

Whenever a server exits a transaction and calls unlock-
All it checks its requestList and gives the requested locks
to the broker. If some of the locks are not requested, the
server can keep them if the broker gave a lease for the
lock, in other words if the broker migrated the lock to this
server.

3.3 Communication and messaging

Messaging between the servers and the broker is done via
ITopic publish-subscribe mechanism in Hazelcast. We
use n + 1 topics where n is the number of servers. For
server-to-broker communication we used a shared chan-
nel called toBroker. However broker-to-server communi-
cation uses separate channels for every server; to ensure
messages are published only to relevant servers. Each
server and the broker runs a message listener thread to
continuously listen for incoming messages on the regis-
tered ITopic. Whenever a new message arrives, message
is parsed and handled based on the message type.

There are three types of messages in Panopticon: A re-
quest message is used to send a lock request to the bro-
ker or server holding the lock. Of course a server cannot
send request messages to other servers directly; the broker
does it on behalf of the server. A reply message is sent,
to submit the lock to the requester when the lock becomes
available. (Note that these messages might only be sent
between a server-broker pair, never a server-server pair.)
Finally, a lease message is used by broker to give/cancel
leases of locks. For this purpose broker keeps a consecu-
tive request list called consegList that holds the consecu-
tive requests to data items along with the id of the request-
ing server.

Finally, Panopticon does not assume reliable channels
and is robust against message loss. To handle message
losses, Panopticon employs message reply timeouts. If a
lock request message is not answered in a specified time,
the server resends the lock request. Side effects of resend-
ing are avoided since the lock request and reply messages
are idempotent.

2Note that these data structures are Lists, compared to the Table data
structures in the broker, because for these locks, the other party is clear
and unique the broker. On the other hand, the broker needs to keep the
other party for a lock explicitly in its table because the other party can
be any of the servers.

4 Experiments and Evaluation

4.1 Setup

To evaluate the performance of Panopticon, we performed
experiments on AWS EC2 using medium Linux instances,
which have two EC2 compute units and 3.75 GB of RAM
each. 3In our experiments, one instance is designated as
the broker, and the remaining instances are servers. In all
the experiments, and the transaction time is provided to
be an average of 1000 such transactions.

We compare Panopticon with the decentralized two
phase locking based Hazelcast transactions. In our basic
Panopticon implementation, to save messages, we made
the broker batch lock-replies and grant them together in
one message to the server. Panopticon-L denotes the ba-
sic Panopticon framework with lazy unlocking optimiza-
tion that we described in Section 2.3. We also performed
experiments with Panopticon-S, which improves Panopti-
con with read staging. In Panopticon-S the broker sends
lock-replies to the server as locks become available. And
when a server receives a lock, it reads the data item im-
mediately to stage a copy of the data-item at its cache
even before it enters the transaction (by receiving all the
locks). Panopticon-SL denotes the Panopticon-S version
with lazy unlocking optimization.

We measure the effect of many parameters in Panopti-
con. Pr_Hist is the probability of using the same objects
in consecutive transactions. For example Pr_Hist = 0.7
means that if a transaction uses 100 shared objects, 70
of them will also be accessed by the previous transaction
from the same server. N _conseq is used to determine the
time for giving a lease. If the same server makes [NV con-
secutive requests to an object without any other server re-
questing it in the meanwhile, then the lease of the object is
given to the server and the server can keep it until another
request comes. Otherwise, it immediately returns the lock
to the broker after its transaction finishes.

In the experiments, we selected N_conseq as 2,
Pr_Hist as 0.9, the total number of data items as 1024,
and the number of data items requested in transaction as
16, if not stated otherwise.

3We used medium instances to show that the lock broker is able to
scale and perform better than Hazelcast distributed transactions on mod-
est hardware. We predict that using AWS large and xlarge instances
would benefit Panopticon more, as they would provide parallel send and
receive opportunities at the broker. Hazelcast distributed transactions,
on the other hand, would still need to serialize send and receive due to
two-phase locking even when parallel send and receives are available.
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4.2 Experiment results with 4 servers

In our first set of experiments, we measured the effect of
increase in the probability of selecting the same items in
consecutive transactions. Note that Hazelcast does not ex-
ploit the history of accesses. Therefore the results remain
stable in Hazelcast regardless of the history probability.
Figure 2 shows that when the number of objects in a trans-
action is low (i.e. 10), decentralized locking performs
slightly better than Panopticon in low degrees of conse-
quent access. On the other hand, if the history probability
is high, Panopticon acquires the edge and the gap between
the methods increases as the probability increases. When
the number of objects in a transaction is high (i.e. 100),
this difference becomes more significant.

In our second set of experiments, we evaluated the ef-
fect of N _conseq, the required number of consecutive

requests for lease acquisition. If this number equals 1,
servers will always keep the locks they acquired unless
they receive a new request for this lock. If this number is
very high, servers will probably never send enough con-
secutive requests to acquire the lease of the lock. As a
result, locks will always be returned to the broker after a
transaction completes in a server.

In Figure 3 we see the effect of this number for his-
tory probabilities of 0.1 and 0.9. When the probabil-
ity is 0.1, the chance of getting a lease vanishes quickly
causing Panopticon to perform similar to Hazelcast when
N _conseq > 2. On the other hand, when Pr_Hist =
0.9, servers will continue to access the same objects for
more consecutive transactions. As a result, even if the
N _conseq increases, a significant amount of leasing oc-
curs even if N_conseq increases.

Note that when N_conseq = 1 Panopticon performs



very similar to Panopticon-L since both methods will
cache every object after the transaction completes. In
addition we can observe that Panopticon-L is robust to
N _conseq due to two advantages: Firstly, even if it does
not have the lease, by waiting until the next transaction
starts, it can avoid unnecessary return of locks to broker.
Secondly, in lazy unlocking writes in a transaction are
written to the local cache instead of the distributed object
store. As a result, transaction duration becomes shorter
decreasing the time required by other servers for getting
the object locks that were being used by this worker.
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Figure 4: Comparison of Panopticon with decentralized
locking as the number of locked items in a transaction
changes

Next, we varied the number of data items locked in a
transaction to test the effects of contention. Naturally,
as the number of locked items increase, the duration of
the transactions and also the contention for locks increase
in all methods. However, as Figure 4 shows, Panopticon
scales better than decentralized locking as the number of
locked objects increase due to its batch locking and non-
busy lock holding capabilities. In addition, in all experi-
ments we have consistently observed that lazy unlocking
improves the performance of Panopticon. This improve-
ment becomes more evident as the number of locked ob-
jects in a transaction increases.

4.3 Scalability results

To evaluate the scalability of Panopticon, we keep the
number of objects in a transaction constant and measure
the total time it takes for 1000 transactions with an in-
creasing number of servers. Each transaction reads and
writes 64 objects from a pool of 1000 total objects shared
across the cluster. Note that since the total number of ob-
jects is constant, the lock contention among servers in-
creases significantly as more servers are employed.
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Figure 5: Scalability of Panopticon as the number of
servers in the cluster increases

Figure 5 shows that Panopticon performs remarkably
well when the contention is low thanks to the data and
lock caching mechanisms in Panopticon. When the num-
ber of servers increases, Panopticon scales linearly pre-
serving its edge over decentralized locking all the time. In
this figure, we did not include Panopticon and Panopticon-
L since they are consistently outperformed by their coun-
terparts, Panopticon-S and Panopticon-LS, that use read
staging.

In the current version of Panopticon, we manage
broker-server communication in the cluster via ITopic
publish-subscribe mechanism in Hazelcast. After ana-
lyzing Panopticon logs, we noticed that ITopic becomes
the communication bottleneck as the number of messages
in the system increases with the increasing number of
servers. In the next version, we plan to employ more
scalable communication primitives between Panopticon
servers and broker.

5 Discussion

Here we discuss some of our design decisions and some
extensions/improvements to Panopticon.

5.1 Scalability and extension to multiple
brokers

The single lock broker can scale well in Panopticon, since
it is not contacted for heavy-weight operations and does
not keep track of transaction state information. As for
the space requirements are concerned, the broker is also
light-weight. The broker does not host all the locks; it just
hosts the locks that receive across-server accesses. More-
over, the broker needs to keep location pointers only for



locks that are not in their default hashed home. If a lock is
hosted at its original hash function home, where the data
is also hosted, then the broker does not need to remember
the lock location since it can use the hash function to find
it.
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Figure 6: Hierarchical composition of Panopticon lock
brokers

In order to give more scalability and avoid bottlenecks
when using extremely large number of servers and locks,
we can employ a hierarchical composition of the brokers.
For this we have k level-0 lock brokers each overseeing a
cluster of servers and a top-level lock broker overseeing
these £ lock brokers. In this scheme each level-0 broker is
responsible for brokering the locks for a nonoverlapping
range of the key-value space (rather the locks correspond-
ing to the key of the data), and will not honor requests for
keys/locks outside their range. The level-0 brokers do not
need to coordinate with each other directly; they will co-
ordinate with the top-level broker using the same Panop-
ticon protocol that manages coordination of the servers
with a broker. In this case, the level-0 brokers take on the
role of servers for the top-level broker, and take on the
role of tracking information for across cluster (i.e., across
level-0 broker boundary) transactions.

Using hierarchical composition extends scalability of
Panopticon. With such a setup, we can make Panopti-
con manage extremely large lock spaces which may not
fit into the memory of a single broker. Moreover, using
hierarchical composition of brokers at different datacen-
ters, the Panopticon system can provide a partial answer to
the across-datacenter/WAN transactions problem. Provid-
ing an efficient and complete system for across-datacenter
transactions remains part of our future work.

5.2 Timeless leases and dealing with parti-
tions

Panopticon does not employ timed leases. A lock is
owned by either the broker or is migrated to a server, and
if it is the latter, the broker can request the lock back any-
time. Thus, timed leases are not needed for the function-
ality of Panopticon. But would timed leases be required
in the presence of partitions?

We find that, even without timed leases, we are able
to devise simple ways for dealing with availability and
consistency to the face of partitions by using broker and
server timeouts. For this, we exploit the broker-based ar-
chitecture of Panopticon.

While there is no global agreement on a partition in a
general distributed system setup (some nodes may detect
a partition while others do not), the Panopticon setup sim-
plifies the partition detection and handling significantly.
Detection is very simple and there are no dissenting opin-
ions on it, since it is dictated by the broker. Furthermore,
unlike a general distributed system setup which is prone to
arbitrary shaped partitioning, the partitions in the Panopti-
con are always simple and uniform. There are only 2 cases
for a partition: 1) the broker is in the partition, and 2) the
broker is not in the partition. We call the partition with
the broker as the main partition. If the broker is not in the
partition, this means the server is partitioned away as an
isolated single node and we call this as a single partition.

While we do not include fault-tolerance to partitioning
in the current version of Panopticon, we plan to imple-
ment it in the next version using this simple idea. If the
broker requests a lock from a server and cannot contact
the server (because of the partition or server being down),
the broker creates that lock and starts hosting it. Trans-
actions continue using replicated (backup) copies of that
data item that fall in the main partition. A partitioned
server can also detect this when it cannot reach the bro-
ker. On discovering this, the isolated/partitioned server
stops using the locks. Note that for this solution, we do
not need timeout per lock, rather timeout per server.

5.3 Further optimizations at the broker

Incorporating priorities. It is undesirable to have a
transaction that is tried several times without success,
while other transactions are executing without hick ups.
After the transaction times out and aborts the first time,
we would like to assign this transaction a priority so it
can complete. In Panopticon, we can design a simple
solution to maintain/track priorities of the transactions.
If the transaction has waited and aborted earlier, we can
increase its priority next time. Then we can keep prior-



ity ordered queues for lock-request/waiting at the broker.
This ensures that, if a transaction rolls-back due to waiting
last time, its chances of succeeding increases significantly
next time. We can also this to prioritize certain critical
transactions over non-critical transactions.

Congestion control. Since the broker gets to observe ev-
ery across-server transaction request, it can notice when
contention is increasing by just monitoring its request-
Table entry queues. In future work, we will consider how
to use this information to take corrective actions.

Transaction reordering for breaking long dependency
chains. When an arriving transaction ¢ starts waiting on
a lock from another executing or pending transaction, this
creates a dependency. Another arriving transaction in turn
starts waiting on a lock from ¢, we call this a transaction
dependency chain. The broker can detect long transac-
tion dependency chains as they form. The broker can then
reorder (or in the worst case abort) some transactions to
break the dependency chains, and improve the comple-
tion times of the transactions, and the overall system per-
formance.

Proactive locking. While serialization is usually thought
as an on-demand and reactive process, it can in fact be
proactive and anticipatory. By anticipating beforehand
and by eliminating a server request for a lock (albeit in a
fraction of the cases), latency can be reduced and through-
put can be improved. By adopting the proactive serializa-
tion philosophy, the lock broker can anticipate a future
request and migrate locks to some servers proactively so
those servers can save time.

The challenge here is to figure out how proactive seri-
alization can be achieved accurately enough to get a pay
off. One approach to achieve proactive serialization is to
employ presignaling. The servers can anticipate which
locks they will be needing in the next transactions and
ask for those locks speculatively. The broker can choose
to honor some of these speculative-requests and achieve
proactive serialization to improve performance. Another
approach to achieve proactive serialization can be to do
a static analysis of servers’ programs and identify certain
patterns/sequence of accesses. When the broker observes
one of the identified patterns playing out, it can give the
locks in advance to the respective servers. Finally, for
proactive serialization it is possible to employ simple ma-
chine learning at the broker. The broker can learn the pat-
terns of requests for locks over time and then can start
distributing these locks speculatively before they are re-
quested. In the next version of Panopticon we will con-
sider incorporating simple machine learning based rules

at the broker.

6 Related Work

6.1 Lock services

Google Chubby [5] is a centralized lock service that pro-
vides an interface similar to a distributed file system
with advisory locks. Chubby depends on manual lock-
ing from the developers and is prone to the disadvan-
tages of locking approaches. To keep the load light,
Chubby provides coarse-grained locks instead of finer-
grained locks. This locking scheme is more appropriate
for loosely-coupled distributed systems: The Google File
System [14] and BigTable [7] use Chubby as a lock ser-
vice. ZooKeeper [16] is an opensource clone of Chubby.

The lock token idea has been employed in the dis-
tributed filesystems domain [21,22]. GPFS [22] employs
a centralized global lock manager in conjunction with lo-
cal lock managers in each file system node, where the
global lock manager can lease locks to local lock man-
agers.

Differing from centralized lock servers, the Panopticon
lock broker does not maintain all the locks, and rather it
is a cache for locks that receive across-server access re-
quests. Differing from previous work on lock brokers,
Panopticon lock broker supports distributed transactions
on multiple objects.

6.2 Transaction processing

Single-key transactional support. Since distributed
transactions are costly and fail to satisfy the scalability
requirements of web applications, several system designs
have sacrificed the ability to support distributed transac-
tions in lieu of supporting single key/object transactions in
a statically partitioned setup. ElasTraS [9] provides ACID
guarantees for transactions that are limited to a single ob-
ject and single partition.

Limited multi-key transactional support. Since sev-
eral applications requires collaboration, scalable and con-
sistent multi-key access is critical for them. Google Mega-
store [3] and Megastore defines “entity groups” to parti-
tion the distributed datastore and provides ACID seman-
tics to multi-key transactions that are confined within a
predefined entity group. Megastore still has a limit of “a
few writes per second per entity group” because higher
write rates will cause even worse performance due to the
conflicts and retries of the multiple leaders of the Paxos
protocol employed for performing transactions. Many



applications in Google used Megastore (despite its rela-
tively low performance) because its data model is sim-
pler to manage than Bigtable’s, and because of its support
for synchronous replication across datacenters. Examples
of well-known Google applications that used Megastore
are Gmail, Picasa, Calendar, Android Market, and Ap-
pEngine.

Limited wider transactional support. Relaxing the
static entity groups restriction, Gstore [10] allows dy-
namic group formation. Key grouping requires a two-
phase locking protocol which is a costly protocol, and
Gstore prohibits transactions across these formed groups.
To provide transactions over a distributed key-value store,
Scalaris [23] employs Paxos. Similarly, CloudTPS [26]
employs two-phase commit protocol to implement trans-
actions over a distributed key-value store. CloudTPS
makes the assumption that applications access only a few
partitions in any of their transactions.

Sinfonia [1] provides multi-key transactional support
by limiting the allowed operations in a transaction to
support only a small subset of compare, and conditional
read/write operations on the memory nodes. These “mini-
transactions” tradeoff expressivity of transactions with
improved performance. The “ordering transactions with
prediction” paper [12] proposes a similar architecture to
Sinfonia, but address transactions that can have conflicts.
Instead of using locks, they use OCC transactions, and
suggests a prediction based ordering of them in advance
(making reservations at the Object Managers), in order to
reduce abort rates of transactions.

General distributed transactions. Recently a num-
ber of systems attempted to provide general unrestricted
transactions. H-Store [18] partitions the database in to
disjoint subsets that are assigned to a single-threaded ex-
ecution engine assigned to one core on a node. H-Store’s
scalability relies on careful data partitioning across execu-
tor nodes, such that most transactions access only one ex-
ecutor node. Deuteronomy [19] introduces a distributed
database architecture that emphasizes decoupling of trans-
actional component from the data component. Calvin [25]
employs a deterministic ordering guarantee to reduce the
prohibitive costs associated with distributed transactions.

Spanner [8] is Google’s multiversion distributed
database that allows distributed transactions. Spanner em-
ploys Paxos at coordinators and two-phase commit across
coordinators and uses accurate timekeeping with tightly
synchronized atomic clocks as a means to improve the
performance of distributed transactions. The coordinators
manage and coordinate locks for data items by maintain-
ing lock lists. Since many coordinators need to be co-
ordinated for serialization of distributed transactions, two
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phase commit is employed for coordinating the coordi-
nators. While distributed coordinator transactions using
two phase commit inevitably take their toll, the Spanner
team believes “it is better to have application program-
mers deal with performance problems due to overuse of
transactions as bottlenecks arise, rather than always cod-
ing around the lack of transactions”. Applications that use
Spanner, such as Google’s F1 advertising backend [24],
can specify which datacenters contain which bits of data
so that frequently read data can be located near users to
reduce write latency.

Panopticon as compared to previous work. Most of
the systems described above rely on some form of limita-
tion on transactions that allows for an acceptable perfor-
mance. Panopticon keeps things simple with a lock broker
architecture, and eschews costly protocols for distributed
coordination. As a result, Panopticon does not limit trans-
actions and allows arbitrary multi-key/object transactions.
Also different from these existing work, Panopticon di-
vorces locks from the data items in an effort to improve
lock access locality. Finally, different from the systems
described above, Panopticon learns the access pattern of
transactions on-the-fly and adaptively migrates locks and
data items in order to improve access/lock locality in the
system.

7 Conclusion

Panopticon achieves scalability by divorcing locks from
the data items and striving to improve lock access local-
ity. A lock can be hosted at the lock broker or at a differ-
ent server than the server that hosts the corresponding data
item. The lock broker mediates the access to data shared
across servers by migrating the associated locks like to-
kens, and in the process gets to learn about the access
patterns of transactions. We showed that the broker can
drastically improve the lock access locality and, hence,
the performance of distributed transactions by employing
simple rules.

We implemented Panopticon leveraging the Hazelcast
in-memory data grid platform. Our experiments demon-
strated Panopticon’s improvements over Hazelcast’s dis-
tributed transactions. The lock broker architecture per-
formed significantly better as the number of data items
and number of servers involved in transactions increase.
This is because it is more efficient to go to the broker
and test/set all the locks at once, instead of contacting
other servers trying to acquire locks in increasing order
in a serial manner. Also as the history locality (the prob-
ability of using the same objects in consecutive transac-
tions) increase, Panopticon’s lock migration strategies im-



proved lock-access locality and resulted in significantly
better performance.

Panopticon can employed for large-scale
coordination-intensive  applications including web-
services, financial applications, online graph applications,
social network graph processing, and distributed storage
and databases.

be
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