Area-FEfficient Order-Preserving Planar Straight-line Drawings of
Ordered Trees*

Ashim Garg Adrian Rusu

Department of Computer Science and Engineering

University at Buffalo
Buffalo, NY 14260

{agarg, adirusu}Q@cse.buffalo.edu

Abstract

Ordered trees are generally drawn using order-preserving planar straight-line grid drawings. We
therefore investigate the area-requirements of such drawings, and present several results: Let T be an
ordered tree with n nodes. Then:

e T admits an order-preserving planar straight-line grid drawing with O(nlogn) area.

e If T is a binary tree, then T' admits an order-preserving planar straight-line grid drawing with

O(nloglogn) area.
e If T is a binary tree, then T admits an order-preserving upward planar straight-line grid drawing

with optimal O(nlogn) area.

We also study the problem of drawing binary trees with user-specified arbitrary aspect ratios. We show
that an ordered binary tree T' with n nodes admits an order-preserving planar straight-line grid drawing
I' with width O(A + logn), height O((n/A)log A), and area O((A + logn)(n/A)log A) = O(nlogn),
where 2 < A < n is any user-specified number. Also note that all the drawings mentioned above can be

constructed in O(n) time.

1 Introduction

An ordered tree T is one with a prespecified counterclockwise ordering of the edges incident on each node.

Ordered trees arise commonly in practice. Examples of ordered trees include binary search trees, arithmetic

*Research supported by NSF CAREER Award No. 11S-9985136 and NSF CISE Research Infrastructure Award No. 0101244.

expression trees, BSP-trees, B-trees, and range-trees.

An order-preserving drawing of T is one in which the counterclockwise ordering of the edges incident on
a node is the same as their prespecified ordering in T'. A planar drawing of T' is one with no edge-crossings.
An upward drawing of T is one, where each node is placed either at the same y-coordinate as, or at a higher
y-coordinate than the y-coordinates of its children. A straight-line drawing of T is one, where each edge
is drawn as a single line-segment. A grid drawing of T is one, where each node is assigned integer z- and
y-coordinates.

Ordered trees are generally drawn using order-preserving planar straight-line grid drawings, as any un-
dergraduate textbook on data-structures will show. An upward drawing is desirable because it makes it
easier for the user to determine the parent-child relationships between the nodes.

We investigate the area-requirement of the order-preserving planar straight-line grid drawings of ordered

trees, and present several results: Let T' be an ordered tree with n nodes.

Result 1: We show that T' admits an order-preserving planar straight-line grid drawing with O(nlogn) area,

O(n) height, and O(logn) width, which can be constructed in O(n) time.
Result 2: If T is a binary tree, then we show stronger results:

Result 2a: T admits an order-preserving planar straight-line grid drawing with O(nloglogn) area,

O((n/logn)loglogn) height, and O(logn) width, which can be constructed in O(n) time.

Result 2b: T admits an order-preserving upward planar straight-line grid drawing with optimal

O(nlogn) area, O(n) height, and O(logn) width, which can be constructed in O(n) time.

An important issue is that of the aspect ratio of a drawing D. Let E be the smallest rectangle, with sides
parallel to = and y-axis, respectively, enclosing D. The aspect ratio of D is defined as the ratio of the larger
and smaller dimensions of E, i.e., if h and w are the height and width, respectively, of E, then the aspect
ratio of D is equal to max{h,w}/ min{h,w}. It is important to give the user control over the aspect ratio
of a drawing because this will allow her to fit the drawing in an arbitrarily-shaped window defined by her
application. It also allows the drawing to fit within display-surfaces with predefined aspect ratios, such as
a computer-screen and a sheet of paper. We consider the problem of drawing binary trees with arbitrary

aspect ratio, and prove the following result:

Result 3: Let T be a binary tree with n nodes. Let 2 < A < n be any user-specified number. T admits an
order-preserving planar straight-line grid drawing I" with width O(A + logn), height O((n/A) log A),
and area O((A + logn)(n/A)log A) = O(nlogn), which can be constructed in O(n) time.

Also note that [7] shows an n-node binary tree that requires £2(n) height and Q(logn) width in any order-
preserving upward planar grid drawing. Hence, the O(n) height and O(logn) width achieved by Result 2b

is optimal in the worst case.

2 Previous Results

Throughout this section, n denotes the number of nodes in a tree. The degree of a tree is equal to the
maximum number of edges incident on a node.

In spite of the natural appeal of order-preserving drawings, quite surprisingly, little work has been done
on optimizing the area of such drawings. The previous best upper bound on the area-requirement of an
order-preserving planar upward straight-line grid drawing of a tree was O(n'*€), where € > 0 is any user-
defined constant, which was shown in [2]. [10] has shown that a special class of balanced binary trees, which
includes k-balanced, red-black, BB|a], and (a,b) trees, admits order-preserving planar upward straight-line
grid drawings with area O(n(loglogn)?). [3], [4], and [12] give order-preserving planar upward straight-line
grid drawings of complete binary trees, logarithmic, and Fibonacci trees, respectively, with area O(n). [7] has
given an upper bound of O(nlogn) on order-preserving planar upward polyline grid drawings. (A polyline
drawing is one, where each edge is drawn as a connected sequence of one or more line-segments.)

As for the lower bound on the area-requirement of order-preserving drawings, [7] has shown a lower
bound of Q(nlogn) for order-preserving planar upward grid drawings. There is no known lower bound for
non-upward order-preserving planar grid drawings other than the trivial Q(n) bound.

We are not aware of any non-trivial results on order-preserving drawings of trees with user-defined
arbitrary aspect-ratios. However, a few results are available on non-order-preserving drawings. [7] shows
that any tree with degree d admits a non-order-preserving planar upward polyline grid drawing with height
h = O(n'~%) and area O(n + dhlogn), where 0 < a < 1 is any user-specified constant. This result implies
that any tree with degree O(n?), where 0 < 8 < 1 is any constant, can be drawn in this fashion in O(n) area
with aspect ratio O(n"), where v is any user-defined constant, such that max{0,28 — 1} < v < 1. [1] shows
that any binary tree admits a non-order-preserving upward planar straight-line orthogonal (each edge drawn
as a horizontal or vertical line-segment) grid drawing with area O(nlogn), and any user-specified aspect
ratio in the range [1,n/logn]. They also prove that the O(nlogn) bound on area is also optimal for such
drawings by showing that for any n and a number 2 < A < n, there exists a binary tree with n nodes that
requires 2(nlogn) area in any upward planar straight-line orthogonal grid drawing with aspect ratio in the
range [1,n/logn]. [1] and [10] show that any binary tree admits a non-order-preserving non-upward planar
straight-line orthogonal grid drawing with height O(n/A)log A, width O(A + logn), where 2 < A < n is
any user-specified number. This result also implies that we can draw any binary tree in this fashion in area
O(nloglogn) (by setting A =logn).

[9] shows that any binary tree admits a non-order-preserving planar non-upward straight-line drawing
with area O(n), and any user-specified aspect ratio in the range [1,n%], where 0 < a < 1 is any constant.
[8] extends this result to trees with degree O(n%), where 0 < § < 1/2 is any constant.

As for other kinds of drawings (non-order-preserving and with fixed aspect ratio), a variety of results are

available. See [6] for a survey on these results.

Table 1 compares our results with some previously known results.

Tree Type Drawing Type Area Aspect Ratio Reference
Complete Binary Upward Straight-line Order-preserving O(n) o(1) [3]
Fibonacci Upward Straight-line Order-preserving O(n) 0(1) [12]
Special Balanced Upward Straight-line
Binary Trees such Order-preserving O(n(loglogn)?) n/log?n [11]
as Red-black
Logarithmic Tree Upward Straight-line
Order-preserving O(n) o) [4]
Binary Upward Straight-line Orthogonal
Non-order-preserving O(nlogn) [1,n/logn] [1]
Non-upward Straight-line Orthogonal
Non-order-preserving O(nloglogn) (nloglogn)/log?®n (1, 11]
Upward Straight-line
Non-order-preserving O(nloglogn) (nloglogn)/log?®n [11]
Upward Straight-line O(n'*) n'=e 2]
Order-preserving O(nlogn) n/logn this paper
Non-upward Straight-line
Non-order-preserving O(n) [1,n%] [9]
Non-upward Straight-line O(n'*e) n'~¢ 2]
Order-preserving O(nlogn) [1,n/logn] this paper
O(nloglogn) (nloglogn)/log?n | this paper
Tree with degree Non-upward Straight-line
O(n®), for any Non-order-preserving O(n) [1,n%] (8]
constant 0 < § < 1/2
Tree with degree Upward Polyline
O(nP), for any Non-order-preserving O(n) [max{1,n**"'},n"] [7]
constant 0 < S < 1
General Upward Polyline Order-Preserving O(nlogn) n/logn [7]
Upward Straight-line Order-Preserving O(n'*e) n 2]
Non-upward Straight-line O(n'™*e) n (2]
Order-preserving O(nlogn) n/logn this paper

Table 1: Bounds on the areas and aspect ratios of various kinds of planar straight-line grid drawings of

an n-node tree. Here, a, 7, and ¢, are any user-defined constants, such that 0 < a < 1,0< vy < 1, and

0 < e < 1. [a,b] denotes the range a...b.

3 Definitions

We assume a 2-dimensional Cartesian space. We assume that this space is covered by an infinite rectangular
grid, consisting of horizontal and vertical channels.

A left-corner drawing of an ordered tree T' is one, where no node of 7T is to the left of, or above the
root of T. The mirror-image of T is the ordered tree obtained by reversing the counterclockwise order of
edges around each node. Let R be a rectangle with sides parallel to the z- and y-axis, respectively. The
height (width) of R is equal to the number of grid-points with the same z-coordinate (y-coordinate) contained
within R. The area of R is equal to the number of grid-points contained within R. The enclosing rectangle E
of a drawing D is the smallest rectangle with sides parallel to the z- and y-axis covering the entire drawing.
The height h, width w, and area of D is equal to the height, width, and area, respectively, of E. The aspect
ratio of D is equal to max{h,w}/ min{h, w}.

A subtree rooted at a node v of an ordered tree T is the maximal tree consisting of v and all its descendents.
A partial tree of T is a connected subgraph of T. A spine of T is a path vov1vs . .. Uy, Where vy, v1, Vo, . . ., Uy

are nodes of T, that is defined recursively as follows (see Figure 1):
® v is the same as the root of T

e ;41 is the child of v;, such that the subtree rooted at v;1; has the maximum number of nodes among

all the subtrees that are rooted at the children of v;.

The concept of a spine has been used implicitly by several tree drawing algorithms, including those
of [1, 2, 7]. In particular, [2] uses it to construct order-preserving drawings. However, our algorithms
typically draw the spine as a more zig-zagging path than the algorithms of [2]. (In fact, some algorithms
of [2] draw the spine completely straight as a single line-segment.) This enables our algorithms to draw a

tree more compactly than the algorithms of [2].

4 Drawing Binary Trees

We now give our drawing algorithm for constructing order-preserving planar upward straight-line grid draw-
ings of binary trees. In an ordered binary tree, each node has at most two children, called its left and right
children, respectively.

Our drawing algorithm, which we call Algorithm BT-Ordered-Draw, uses the divide-and-conquer paradigm
to draw an ordered binary tree 7. In each recursive step, it breaks 7" into several subtrees, draws each subtree
recursively, and then combines their drawings to obtain an upward left-corner drawing D(T') of T. We now
give the details of the actions performed by the algorithm to construct D(T"). Note that during its working,
the algorithm will designate some nodes of T as either left-knee, right-knee, ordinary-left, ordinary-right,

switch-left or switch-right nodes (for an example, see Figure 2):

Figure 1: (a) A binary tree T with spine vgv; ...v13. (b) The order-preserving planar upward straight-line

grid drawing of T' constructed by Algorithm BT-Ordered-Draw.

1. Let P = vyv1v2 ...V, be a spine of T'. Define a non-spine node of T' to be one that is not in P.
2. Designate vy as a left-knee node.
3. for i = 0 to m do (see Figure 2)

Depending upon whether v; is a left-knee, right-knee, ordinary-left, ordinary-right, switch-left, or
switch-right node, do the following:

(a) v; is a left-knee node: If v;1+1 has a left child, and this child is not v;q, then designate v;1;
as a switch-right node, otherwise designate it as an ordinary-left node. Recursively construct
an upward left-corner drawing of the subtree of T rooted at the non-spine child of v;.

(b) v; is an ordinary-left node: If v;11 has a left child, and this child is not v; 2, then designate
viy1 as a switch-right node, otherwise designate it as an ordinary-left node. Recursively
construct an upward left-corner drawing of the subtree of 7" rooted at the non-spine child of
v;.

(c) v; is a switch-right node: Designate v;y; as a right-knee node. Recursively construct an
upward left-corner drawing of the subtree of T" rooted at the non-spine child of v;.

(d) v; is a right-knee, ordinary-right, or switch-left node: Do the same as in the cases, where

v; is a left-knee, ordinary-left, or switch-right node, respectively, with “left” exchanged with
“right”, and instead of constructing an upward left-corner drawing of the subtree T; of T
rooted at the non-spine child of v;, we recursively construct an upward left-corner drawing of

the mirror image of T;.

4. Let G be the drawing with the maximum width among the drawings constructed in Step 3. Let W be
the width of G.

5. Place vy at the origin.

6. for ¢ = 0 to m do (see Figures 2 and 3)

Let H; be the horizontal channel corresponding to the node placed lowest in the drawing of T con-

structed so far.

Depending upon whether v; is a left-knee, right-knee, ordinary-left, ordinary-right, switch-left, or

switch-right node, do the following:

(a)

v; 15 a left-knee node: If v;41 is the only child of v;, then place v;41 on the horizontal channel
H; + 1 and one unit to the right of v; (see Figure 3(a)). Otherwise, let s be the child of v;
different from wv; 1. Let D be the drawing of the subtree rooted at s constructed in Step 3. If
s is the right child of v;, then place D such that its top boundary is at the horizontal channel
H; + 1 and its left boundary is one unit to the right of v;; place v;;1 one unit below D and
one unit to the right of v; (see Figure 3(b)). If s is the left child of v;, then place v;+1 one unit
below and one unit to the right of v; (see Figure 3(a)) (the placement of D will be handled

by the algorithm when it will consider a switch-right node later on).

v; 18 an ordinary-left node: Since v; is an ordinary-left node, either v; 11 will be the only child
of v;, or v; will have a right child s, where s # v;4+1. If v; 41 is the only child of v;, then place
vi+1 one unit below v; in the same vertical channel as it (see Figure 3(c)). Otherwise, let s be
the right child of v;. Let D be the drawing of the subtree rooted at s constructed in Step 3.
Place D one unit below and one unit to the right of v;; place v;41 on the same horizontal
channel as the bottom of D and in the same vertical channel as v; (see Figure 3(d)).

v; @8 a switch-right node: Note that, since v; is a switch-right node, it will have a left child
s, where s # v; ;1. Let v; be the left-knee node of P closest to v; in the subpath vovy ... v;
of P. vj is called the closest left-knee ancestor of v;. Place v;;1 one unit below and W 41
units to the right of v;.

Let D be the drawing of the subtree rooted at s constructed in Step 3. Place D one unit
below v; such that s is in the same vertical channel as v; (see Figure 3(e)). If v; has a left

child s’, which is different from v;;1, then let D’ be the drawing of the subtree rooted at s’

Figure 2: (a) A binary tree T with spine vgv; ...v12. (b) A schematic diagram of the drawing D(T) of T
constructed by Algorithm BT-Ordered-Draw. Here, vy is a left-knee, v; is an ordinary-left, vy is a switch-
right, vs is a right-knee, v4 is an ordinary-right, vs is a switch-left, vg is a left-knee, v7 is a switch-right, vg is
a right-knee, vg is an ordinary-right, v1¢ is a switch-left, v;; is a left-knee, and v5 is an ordinary-left node.
For simplicity, we have shown Dy, D,...,Dg with identically sized boxes but in actuality they may have

different sizes.

constructed in Step 3. Place D’ one unit below D such that s’ is in the same vertical channel
as v; (see Figure 3(f)).

(d) v; is a right-knee, ordinary-right, or switch-left node: These cases are the same as the cases,
where v; is a left-knee, ordinary-left, or switch-right node, respectively, except that “left” is
exchanged with “right”, and the left-corner drawing of the mirror image of the subtree rooted
at the non-spine child of v;, constructed in Step 3, is first flipped left-to-right and then is
placed in D(T).

To determine the area of D(T'), notice that the width of D(T') is equal to W + 3 (see the definition of W
given in Step 3). From the definition of a spine, it follows easily that the number of nodes in each subtree
rooted at a non-spine node of T is at most n/2, where n is the number of nodes in 7. Hence, if we denote
by w(n), the width of D(T'), then, W < w(n/2), and so, w(n) < w(n/2) 4+ 3. Hence, w(n) = O(logn).
The height of D(T) is trivially at most n. Hence, the area of D(T) is O(nlogn). It is easy to see that the
Algorithm can be implemented such that it runs in O(n) time.

[7] has shown a lower bound of (nlogn) for order-preserving planar upward straight-line grid drawings

of binary trees. Hence, the upper bound of O(nlogn) on the area of D(T') is also optimal. We therefore get

Vit

Figure 3: (a,b) Placement of v;, v;y1, and D in the case when v; is a left-knee node: (a) v;41 is the only
child of v; or s is the left child of v;, (b) s is the right child of v;. (c,d) Placement of v;, v;11, and D in
the case when v; is an ordinary-left node: (c) v;41 is the only child of v;, (d) s is the right child of v;. (e,f)
Placement of v;, v;y1, D, and D in the case when v; is a switch-right node. (e) v; does not have a left child,

(f) v; has a left child s’. Here, D’ is the drawing of the subtree rooted at s'.

the following theorem:

Theorem 1 A binary tree with n nodes admits an order-preserving upward planar straight-line grid drawing

with height at most n, width O(logn), and optimal O(nlogn) area, which can be constructed in O(n) time.

We can also construct a non-upward left-corner drawing D'(T’) of T, such that D’(T) has height O(logn)
and width at most n, by first constructing a left-corner drawing of the mirror image of T using Algorithm

BT-Ordered-Draw, then rotating it clockwise by 90°, and then flipping it right-to-left. This gives Corollary 1.

Corollary 1 Using Algorithm BT-Ordered-Draw, we can construct in O(n) time, a non-upward left-corner
order-preserving planar straight-line grid drawing of an n-node binary with area O(nlogn), height O(logn),

and width at most n.

5 Drawing General Trees

In a general tree, a node may have more than two children. This makes it more difficult to draw a general
tree.

In this section, we give an algorithm, which we call Algorithm Ordered-Draw, for constructing (non-
upward) order-preserving planar straight-line grid drawing with O(nlogn) area in O(n) time. Algorithm
Ordered-Draw is a modification of the algorithm for drawing binary trees presented in Section 4.

Let T be a tree with n nodes. In each recursive step, Algorithm Ordered-Draw breaks T into several

subtrees, draws each subtree recursively, and then combines their drawings to obtain a left-corner drawing

D(T) of T.

We now give the details of the actions performed at each recursive step of the algorithm to construct

a a left-corner drawing D(T) of T. Note that the counterclockwise ordering of edges around each node,

induces a counterclockwise ordering of the children of each node. During its working, the algorithm will

designate some nodes of T as either left-knee, right-knee, switch-left, or switch-right nodes (for an example,

see Figure 4):

1. Let P = vgv1v3 ...V, be a spine of T'. Define a non-spine node of T' to be one that is not in P.

2. Designate vy as a left-knee node.

3. for i = 0 to m do (see Figure 4)

Depending upon whether v; is a left-knee, right-knee, ordinary-left, ordinary-right, switch-left, or

switch-right node, do the following:

(a)

(b)

v; 15 a left-knee node: Designate v; 1 as a switch-right node. Recursively construct left-corner
drawings of the subtrees of T rooted at all the non-spine children of v;.
v; is a switch-right node: Designate v;11 as a right-knee node. Recursively construct left-

corner drawings of the subtrees of T" rooted at all the non-spine children of v;.

v; 1S a right-knee, or switch-left node: These cases are the same as the cases, where v; is a
left-knee node, or switch-right node, respectively, with “left” exchanged with “right”, and
instead of recursively constructing left-corner drawings of the subtrees of T rooted at all the
non-spine children of v;, we recursively construct the left-corner drawings of the mirror images

of these subtrees.

4. Let G be the drawing with the maximum width among the drawings constructed in Step 3. Let W be
the width of G.

5. Place vg at the origin. Let Yy be the horizontal channel one unit below the origin.

6. for i = 0 to m do (see Figures 4 and 5)

Depending upon whether v; is a left-knee, right-knee, ordinary-left, ordinary-right, switch-left, or

switch-right node, do the following:

(a)

v; s a left-knee node: Let Q = 5153 . .. sk be the (possibly empty) sequence of the children of
v; that come after v;41 in the counterclockwise order of the children of v; (see Figure 5(a)).
In this sequence, the s;’s, 1 < j < k, are placed in the same order as they occur in the
counterclockwise order of the children of v;. Let D; be the drawing of the subtree rooted
at s; constructed in Step 3. Place D1, Da,..., Dy in that order one above the other at unit

vertical separation from each other, such that D; is at the bottom and Dy is at the top, the

10

top of Dy is at the horizontal channel Y;, and each D; is placed one unit to the right of v;
(see Figure 5(b)).

Let Y; 11 be the horizontal channel one unit below D; if @ is not empty, and is the same as
Y; if Q is empty.

v; 18 a switch-right node: Note that, since v; is a switch-right node, v;_; must be a left-knee
node.

Let @ = s182...5k be the (possibly empty) sequence of the children of v; that come after
vi4+1 in the counterclockwise order of the children of v; (see Figure 5(c)). In this sequence,
the s;’s, 1 < j <k, are placed in the same order as they occur in the counterclockwise order
of the children of v;. Let D; be the drawing of the subtree rooted at s; constructed in Step 3.
Place Dy, Ds, ..., Dy in that order one above the other at unit vertical separation from each
other, such that D; is at the bottom and Dy is at the top, the top of Dy is at horizontal
channel Y;, and each Dj is placed two units to the right of v;_;.

Place v; such that it is one unit to the right of v;_;, and is one unit below D,, if @ is not
empty, and is at the horizontal channel Y; if @) is empty.

Place v;4+1 one unit below and W + 1 units to the right of v; (see Figure 5(d)).

Let Q' = s}s,...s.. be the (possibly empty) sequence of the children of v; that come before
vi4+1 in the counterclockwise order of the children of v; (see Figure 5(c)). In this sequence,
the s;-’s, 1 < j <r, are placed in the same order as they occur in the counterclockwise order
of the children of v;. Let D be the drawing of the subtree rooted at s} constructed in Step 3.
Place D}, D),...,D. in that order one above the other at unit vertical separation from each
other, such that D] is at the bottom and D.. is at the top, s.. is placed on the same vertical
channel as v; 11, and each Dj is placed two units to the right of v;_1 (see Figure 5(d)).

Let H be the horizontal channel which is one unit below the bottom of D] if @’ is not empty,
and contains v;11 if Q' is empty.

Let Q" = s{s} ... s] be the (possibly empty) sequence of the children of v;_; that come before
v; in the counterclockwise order of the children of v;_1 (see Figure 5(c)). In this sequence,
the s;-' ’s, 1 < j < t, are placed in the same order as they occur in the counterclockwise order
of the children of v;. Let D} be the drawing of the subtree rooted at s/ constructed in Step 3.
Place DY, DY, ..., D! in that order one above the other at unit vertical separation from each
other, such that DY is at the bottom and D}’ is at the top, the top of D} is at the horizontal
channel H, and each D is placed one unit to the right of v;_; (see Figure 5(d)).

Let Y;4+1 be the horizontal channel which is one unit below the bottom of Df if @" is not
empty, and is the same as H if Q" is empty.

v; 18 a right-knee, or switch-left node: These cases are the same as the cases, where v; is a left-

knee node, or switch-right node, respectively, except that “left” is exchanged with “right”,

11

Figure 4: (a) A tree T with spine vgvy ...vs5. (b) An O(nlogn) area planar straight-line grid drawing of
T. In this drawing, v is left-knee node, v; is switch-right node, vs is right-knee node, vs is switch-left node,

vy is left-knee node, vs is switch-right node.

“counterclockwise” is replaced by “clockwise”, and the left-corner drawings of the mirror
images of the subtrees rooted at the non-spine children of v;, constructed in Step 3, are first

flipped left-to-right and then are placed in D(T).

Just as for Algorithm BT-Ordered-Draw, we can show that the width w(n) of D(T) satisfies the recurrence:
w(n) < w(n/2) + 3. Hence, w(n) = O(logn). The height of D(T) is trivially at most n. Hence, the area of
D(T) is O(nlogn).

Theorem 2 A tree with n nodes admits an order-preserving planar straight-line grid drawing with O(nlogn)

area, O(logn) width, and height at most n, which can be constructed in O(n) time.

We can also construct a left-corner drawing D'(T) of T', such that D’(T) has height O(log n) and width at
most n, by first constructing a left-corner drawing of the mirror image of T' using Algorithm Ordered-Draw,

then rotating it clockwise by 90°, and then flipping it right-to-left. This gives Corollary 2.

Corollary 2 Let T be a tree with n nodes. Using Algorithm Ordered-Draw, we can construct in O(n) time,
a left-corner order-preserving planar straight-line grid drawing D of T with O(nlogn) area, such that D has

height O(logn), and width at most n.

6 Drawing Binary Trees with Arbitrary Aspect Ratio

Let T be a binary tree. We show that, for any user-defined number A, where 2 < A < n, we can construct an

order-preserving planar straight-line grid drawing of T' with O((n/A)log A) height and O(A + logn) width.

12

Figure 5: (a) s1, 82, ..., Sk is the sequence of the children of v; that come after v; ;1 in the counterclockwise
order of the children of v;. (b) Placement of v;, s1, S, ..., Sk, and D1, Da, ..., Dy in the case when v; is a left-
knee node. (c) s1,-.., sk is the sequence of the children of v; that come after v;;1 in the counterclockwise
order of the children of v;. s},...,s) is the sequence of the children of v; that come before v;4; in the
counterclockwise order of the children of v;. s7,..., s} is the sequence of the children of v;_; that come before
v; in the counterclockwise order of the children of v;_;. (d) Placement of v;, vit1, $1,---,8%, D1,..., Dk,

Siy.ey 8y, Dy oDy, sy, ..., 88, DY, ..., Dy in the case when v; is a switch-right node.

Thus, by setting the value of A, users can control the aspect ratio of the drawing. This result also implies
that we can construct such a drawing with area O(nloglogn) by setting A = logn.

Our algorithm combines the approach of [1] for constructing non-upward non-order-preserving drawings
of binary trees with arbitrary aspect ratio with our approach for constructing order-preserving drawings

given in Sections 4 and 5. We will also use the following generalization of Lemma 3 of [1]:
Lemma 1 Suppose A > 1, and f is a function such that:

o ifn < A, then f(n) <1; and

e ifn> A, then f(n) < f(n*)+ f(n™) + f(n"”) + 1 for some n*,n",n" <n— A withn*+n* +n" <n.
Then, f(n) < 6n/A —2 for alln > A.

Proof: The proof is by induction over n, with the base case being n = A + 1.

If n = A+ 1, then n*,n",n” < A. Hence, f(n*), f(nT), f(n”) <1. Hence, f(n) <1+1+1+1=4<
6n/A—2.

Now we prove the induction. Suppose f(m) < 6m/A —2 for all m < n—1. Consider f(n). We have four

cases:

e n*,n",n"” < A: Then, f(n*), f(n'), f(n”) <1. Hence, f(n) <1+1+1+1=4<6n/A—2.

13

e Exactly two of n*,n™, and n” have values less than or equal to A: Assume without loss of generality
that n*,n*t < A and n” > A. Then, f(n*),f(n*) <1, and f(n") < 6n”"/A—-2<6(n— A)/A—-2=
6n/A—6—2=6n/A—8. Hence, f(n) <14+1+6n/A—8+1=6n/A—-5<6n/A-2.

e Exactly one of n*,nT, and n” has value less than or equal to A: Assume without loss of generality
that n* < A, and nt,n” > A. Then, f(n*) < 1, f(n*) + f(n") < 6nt/A -2+ 6n"/A -2 =
6(nt +n")/A—4<6n/A—4. Hence, f(n) <1+6n/A—4+1=6n/A—2.

e n*nt n” > A: f(n) = f(n*) + f(nt) + f(n")+1 < 6n*/A—-2+6n"/A-2+6n"/A-2+1
6(n* +nt+n")/A—-5<6n/A—-5<6n/A-2.

O

An order-preserving planar straight-line grid drawing of a binary tree T is called a feasible drawing, if
the root of T is placed on the left boundary and no node of 7" is placed between the root and the upper-left
corner of the enclosing rectangle of the drawing. Note that a left-corner drawing is also a feasible drawing.

We now describe our algorithm, which we call Algorithm BDAAR, for drawing a binary tree T with
arbitrary aspect ratio. Let m be the number of nodes in 7. Let 2 < A < m be any number given as a
parameter to Algorithm BDAAR.

Figure 6(a) and Figure 6(b) show the drawings of the tree of Figure 1(a) constructed by Algorithm
BDAAR with A = y/m and using Corollary 1, and Corollary 2, respectively.

E?

(a)

Figure 6: Drawings of the tree with n = 57 nodes of Figure 1(a) constructed by Algorithm BDAAR with
A = \/m = +/57 = 7.55 and using: (a) Corollary 1, and (b) Corollary 2, respectively.

14

Like Algorithm BT-Ordered-Draw of Section 4, Algorithm BDAAR is also a recursive algorithm. In each
recursive step, it also constructs a feasible drawing of a subtree 7" of T.. If T’ has at most A nodes in it,
then it constructs a left-corner drawing of 7" using Corollary 1 or Corollary 2, such that the drawing has
width at most n and height O(logn), where n is the number of nodes in 7”. Otherwise, i.e., if 7" has more

than A nodes in it, then it constructs a feasible drawing of T” as follows:
1. Let P = vyv1vz...vq be a spine of T”.

2. Let n; be the number of nodes in the subtree of 7" rooted at v;. Let v; be the vertex of P with the
smallest value for k such that ny > n — A and ngy1 < n — A (since 7" has more than A nodes in it

and ng,n1,...,n, is a strictly decreasing sequence of numbers, such a k exists).

3. for each i, where 0 < ¢ < k — 1, denote by T;, the subtree rooted at the non-spine child of v; (if v; does
not have any non-spine child, then T; is the empty tree, i.e., the tree with no nodes in it). Denote by
T* and T, the subtrees rooted at the non-spine children of v; and vy 1, respectively, denote by T",
the subtree rooted at vg41, and denote by 7", the subtree rooted at vgo (if v and vgy1 do not have
non-spine children, and k+1 = g, then 7%, T, and 7" are empty trees). For simplicity, in the rest of
the algorithm, we assume that 7%, T'", 7", and each T; are non-empty. (The algorithm can be easily

modified to handle the cases, when T*, T, T"", or some T;’s are empty).
4. Place vg at origin.
5. We have two cases:

e k = 0: Recursively construct a feasible drawing D* of T*. Recursively construct a feasible drawing

D+ of the mirror image of 7. Recursively construct a feasible drawing D" of the mirror image
of T". Let s¢ be the root of T* and s; be the root of T7.
T' is drawn as shown in Figure 7(a,b,c,d). If so is the left child of vy, then place D* one unit
below vy with its left boundary aligned with vg (see Figure 7(a,c)). If so is the right child of v,
then place D* one unit above and one unit to the right of vy (see Figure 7(b,d)). Let W*, W,
and W'’ be the widths of D*, DT, and D", respectively. v; is placed in the same horizontal
channel as vy to its right at distance max{W* + 1, W+ + 1, W — 1} from it. Let By and Cy be
the lowest and highest horizontal channels, respectively, occupied by the subdrawing consisting
of vy and D*. If s; is the left child of v;, then flip DT left-to-right and place it one unit below
By and one unit to the left of v; (see Figure 7(a,b)). If s; is the right child of v, then flip D
left-to-right, and place it one unit above Cy and one unit to the left of v; (see Figure 7(c,d)). Let
By be the lowest horizontal channel occupied by the subdrawing consisting of vg, D*, v and DT.
Flip D" left-to-right and place it one unit below B; such that its right boundary is aligned with
v1 (see Figure 7(a,b,c,d)).

15

e k > 0: For each T;, where 0 < i < k—1, construct a left-corner drawing D; of T; using Corollary 1
or Corollary 2.
Recursively construct feasible drawings D* and D" of the mirror images of T* and T”, respectively.
T" is drawn as shown in Figure 8(a,b,c,d). If Tj is rooted at the left child of vy, then Dy is placed
one unit below and with the left boundary aligned with vy. If Ty is rooted at the right child of
vg, then Dg is placed one unit above and one unit to the right of vy. Each D; and v;, where

1 <1: <k —1, are placed such that:

— v; is in the same horizontal channel as v;_1, and is one unit to the right of D;_;, and

— if T; is rooted at the left child of v;, then D; is placed one unit below v; with its left boundary
aligned with v;, otherwise (i.e., if T} is rooted at the right child of v;) D; is placed one unit

above and one unit to the right of v;.

Let Bix_1 and Ck_; be the lowest and highest horizontal channels, respectively, occupied by the
subdrawing consisting of vg,v1,v2,...,v,_1 and Dy, D1, D,,..., Dy 1. Let d be the horizontal
distance between vy and the right boundary of the subdrawing consisting of vy, v1,va, ..., Vk—1

and Dg, D1, Ds,...,Dy_1. Let W* and W" be the widths of D* and D", respectively.

vk is placed to the right of vg_; in the same horizontal channel as it, such that the horizontal
distance between vy and vy is equal to max{W" — 1,W* 4+ 1,d + 1}. If T* is rooted at the
left-child of vg, then D* is flipped left-to-right and placed one unit below By _; and one unit
left of vy (see Figure 8(a,b)). If T* is rooted at the right-child of vy, then D* is flipped left-to-
right and placed one unit above C;_; and one unit to the left of v, (see Figure 8(c,d)) . Let
By, be the lowest horizontal channel occupied by the subdrawing consisting of vy, vs, ..., vk, and
D1,Ds,...,Dy_1,D*. D" is flipped left-to-right and placed one unit below By, such that its right
boundary is aligned with vy (see Figure 8(b,d)).

Let m; be the number of nodes in T}, where 0 < 7 < k—1. From Corollaries 1 and 2, the height of each D;
is O(log m;) and width at most m;. Total number of nodes in the partial tree consisting of To, T1, ..., Tk—1
and vg,v1,...,Vk_1 is at most A — 1. Hence, the height of the subdrawing consisting of Dy, Dy,..., Dy 1
and vg, v1,...,Vk—1 is O(log A) and width is at most A — 1 (see Figure 8).

Suppose T", T*, T+, T", and T"" have n, n*, n™, n”, and n"”’ nodes, respectively. If we denote by H(n)

and W (n), the height and width of the drawing of 7" constructed by Algorithm BDAAR, then:

H(n) = H(n*)+Hnm")+HMR")+1 ifn>Aandk=0
= H(®n*)+ H(n")+ H(n")+ O(log A)
H(n) = H(n*)+H(n")+O(logA) if n>Aandk >0

H(n) = O(logA) ifn<A

Figure 7: Case k = 0: (a) sg is the left child of vy and s; is the left child of v1. (b) sg is the right child of
vo and s is the left child of vy. (c) sg is the left child of vy and s is the right child of v1. (d) so is the right
child of vy and s; is the right child of v;.

o g V2 NI
S.
D* 3
| D~ Vs pVs
(a) (b) (c) (d)

Figure 8: Case k > 0: Here k = 4, sq, s1, and s3 are the left children of vy, v1, and v3 respectively, s is
the right child of vq, Ty, T7, T3, and T3 are the subtrees rooted at vy, v1, v2, and vs respectively. Let s4 be

the root of T*. (a) sy is left child of vs. (b) s4 is the right child of vy.

Since n*,n*,n"”,n"" < n—A, from Lemma 1, it follows that H(n) = O(log A)(6n/A—2) = O((n/A)log A).
Also we have that:

W(n) = max{W(n*)+2,Wn")+2,W(n")} ifn>Aand k=0
W(n) = max{A,W(n*)+2,W(n")} ifn>Aandk >0
W(n) < Aifn<A

Since, n*,n*,n* <n/2,and n”,n"” <n—A < n—1, we get that W(n) < max{A4,W(n/2)+2, W(n—1)}.
Therefore, W(n) = O(A + logn). We therefore get the following theorem:

Theorem 3 Let T be a binary tree with n nodes. Let 2 < A < n be any number. T admits an order-

17

preserving planar straight-line grid drawing with width O(A+logn), height O((n/A)log A), and area O((A+

logn)(n/A)log A) = O(nlogn), which can be constructed in O(n) time.

Setting A = logn, we get that:

Corollary 3 An n-node binary tree admits an order-preserving planar straight-line grid drawing with area

O(nloglogn), which can be constructed in O(n) time.

References

[1]

[10]

T. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing area and aspect ratio in straight-

line orthogonal tree drawings. Computational Geometry: Theory and Applications, 23:153-162, 2002.

T. M. Chan. A near-linear area bound for drawing binary trees. In Proc. 10th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 161-168, 1999.

P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward drawings

of binary trees. Comput. Geom. Theory Appl., 2:187-200, 1992.

P. Crescenzi and P. Penna. Strictly-upward drawings of ordered search trees. Theoretical Computer

Science, 203(1):51-67, 1998.

P. Crescenzi, P. Penna, and A. Piperno. Linear-area upward drawings of AVL trees. Comput. Geom.
Theory Appl., 9:25-42, 1998. (special issue on Graph Drawing, edited by G. Di Battista and R. Tamas-

sia).

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice Hall, Upper Saddle
River, NJ, 1999.

A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings with optimal area. Internat.

J. Comput. Geom. Appl., 6:333-356, 1996.

A. Garg and A. Rusu. Straight-line drawings of general trees with linear area and arbitrary aspect ratio.
In Proceedings 2003 International Conference on Computational Science and Its Applications (ICCSA
2003). To appear.

A. Garg and A. Rusu. Straight-line drawings of binary trees with linear area and arbitrary aspect
ratio. In Graph Drawing (GD’02), volume 2528 of Lecture Notes in Computer Science, pages 320-331.
Springer-Verlag, 2002.

C.-S. Shin, S. K. Kim, and K.-Y. Chwa. Area-efficient algorithms for upward straight-line tree drawings.
In Proc. 2nd Ann. Internat. Conf. Computing and Combinatorics, volume 1090 of Lecture Notes Comput.

Sci., pages 106-116. Springer-Verlag, 1996.

18

[11] C.-S. Shin, S.K. Kim, S.-H. Kim, and K.-Y. Chwa. Area-efficient algorithms for straight-line tree
drawings. Comput. Geom. Theory Appl., 15:175-202, 2000.

[12] L. Trevisan. A note on minimum-area upward drawing of complete and Fibonacci trees. Inform. Process.

Lett., 57(5):231-236, 1996.

19

