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Abstract. It is well-known that a planar graph with n nodes admits a
planar straight-line grid drawing with O(n?) area [3, 8], and in the worst
case it requires £2(n?) area. It is also known that a binary tree with n
nodes admits a planar straight-line grid drawing with O(n) area [6]. Thus,
there is wide gap between the ©(n?) area-requirement of general planar
graphs and the ©(n) area-requirement of binary trees. It is therefore
important to investigate special categories of planar graphs to determine
if they can be drawn in o(n?) area.

Outerplanar graphs form an important category of planar graphs. We
investigate the area-requirement of planar straight-line grid drawings
of outerplanar graphs. Currently the best known bound on the area-
requirement of such a drawing of an outerplanar graph with n vertices
is O(n?), which is that same as for general planar graphs. Hence, a fun-
damental question arises that can be draw an outerplanar graph in this
fashion in o(n?) area?

In this paper, we provide a partial answer to this question by proving
that an outerplanar graph with n vertices and degree d can be drawn in
this fashion in area O(dn'*®) in O(nlogn) time. This implies that an
outerplanar graph with n vertices and degree d, where d = o(n°%?), can
be drawn in this fashion in o(n?) area.

From a broader perspective, our contribution is in showing a sufficiently
large natural category of planar graphs that can be drawn in o(n?) area.

1 Introduction

A drawing I' of a graph G maps each vertex of G to a distinct point in the plane,
and each edge (u,v) of G to a simple Jordan curve with endpoints v and v. I"
is a straight-line drawing, if each edge is drawn as a single line-segment. " is a
polyline drawing, if each edge is drawn as a connected sequence of one or more
line-segments, where the meeting point of consecutive line-segments is called a
bend. I' is a grid drawing if all the nodes have integer coordinates. I" is a planar
drawing, if edges do not intersect each other in the drawing. In this paper, we
concentrate on grid drawings. So, we will assume that the plane is covered by a
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rectangular grid. Let I" be a grid drawing. Let R be the smallest rectangle with
sides parallel to the X-and Y -axes, respectively, that covers I" completely. The
width (height) of I' is equal to 14+ width of R (1+height of R). The area of I"
is equal to (14+width of R)-(1+height of R), which is equal to the number of
grid points contained within R. The degree of a graph is equal to the maximum
number of edges incident on a vertex.

It is well-known that a planar graph with n vertices admits a planar straight-
line grid drawing with O(n?) area [3, 8], and in the worst case it requires 2(n?)
area. It is also known that a binary tree with n nodes admits a planar straight-
line grid drawing with O(n) area [6]. Thus, there is wide gap between the ©(n?)
area-requirement of general planar graphs and the ©(n) area-requirement of
binary trees. It is therefore important to investigate special categories of planar
graphs to determine if they can be drawn in o(n?) area.

Outerplanar graphs form an important category of planar graphs. We inves-
tigate the area-requirement of planar straight-line grid drawings of outerplanar
graphs. Currently the best known bound on the area-requirement of such a draw-
ing of an outerplanar graph with n vertices is O(n?), which is that same as for
general planar graphs. Hence, a fundamental question arises: can we draw an
outerplanar graph in this fashion in o(n?) area?

In this paper, we provide a partial answer to this question by proving that
an outerplanar graph with n vertices and degree d can be drawn in this fashion
in area O(dn'*%8) = O(dn'8) in O(n) time. This implies that an outerplanar
graph with n vertices and degree O(n®), where 0 < § < 0.52 is a constant, can
be drawn in this fashion in o(n?) area.

From a broader perspective, our contribution is in showing a sufficiently large
natural category of planar graphs that can be drawn in o(n?) area.

In Section 4, we present our drawing algorithm. This algorithm is based on a
tree-drawing algorithm of [2]. The connection between the two algorithms comes
from the fact that the dual of a maximal outerplanar graph is a tree.

2 Previous Results

There has been little work done on planar straight-line grid drawings of outer-
planar graphs. Let G be an outerplanar graph with n vertices. Currently the
best known bound on the area-requirement of such a drawing of an outerplanar
graph with n vertices is O(n?), which is that same as for general planar graphs.
However, in 3D, we can construct a crossings-free straight-line grid drawing of
G with O(n) volume [4,5].

[1] shows that G admits a planar polyline drawing as well as a visibility
representation with O(nlogn) area. [7] shows that G admits a planar polyline
drawing with O(n) area, if G has degree 4. The technique of [7] can be easily
extended to construct a planar polyline drawing of G with O(d?n) area, if G has
degree d [1].



3 Preliminaries

We assume a 2-dimensional Cartesian space. We assume that this space is covered
by an infinite rectangular grid, consisting of horizontal and vertical channels.

We denote by |G|, the number of vertices (nodes) in a graph (tree) G. A
rooted tree is one with a pre-specified root. An ordered tree is a rooted tree
with a pre-specified left-to-right order of the children for each node. Let T be
an ordered binary tree with n nodes. Let p and § be two constants such that
p=0.48 and 0 < § < 0.0004. A spine S of T is a path vyvivs...v,,, where
Vg, V1, Vg, - . . , Uy are nodes of T', that is defined recursively as follows (as defined
in the proof of Lemma A.1 in [2]):

— vp is the same as the root of T', and v,, is a leaf of T}

— let a; and B; be the the left and right subtrees with the maximum number
of nodes among the subtrees that are rooted at any of the nodes in the path
voU1 - - - V55 let L; and R; be the subtrees rooted at the left and right children
of v; respectively. Then,

o if |o;|P + |Ri|P < (1 — &)nP and |L;|P + |B;|P > (1 — §)nP, set v;y1 to be
the left child of v;,
o if |a,~|p + |Rz|p > (1 — 5)77}7 and |L1|p + |ﬂi|p < (1 - 5)77,”, set v;+1 to be
the right child of v;,
o if |a;|P + |R;|? < (1 — §)nP and |L;|P + |Bi|P < (1 — §)nP, we terminate
the construction as follows:
% if |L;| < |R;|, set the spine to be the concatenation of path vovs ... v;
and the leftmost path from v; to a leaf v,,,
* otherwise (i.e. |L;| > |R;|), set the spine to be the concatenation of
the path vyv; ...v; and the rightmost path from v; to a leaf v,,.
e in [2] it is shown that the case |a;|P +|R;|P > (1—9)nP and |L; [P+ |B:|P >
(1 — §)nP is not possible.

Vg, V1, - - - , Um are called spine nodes. A subtree T' of T is a subtree of S, if it
is rooted at the non-spine child ¢ of a spine node v;; T" is a left (right) subtree
of S, if c is the left (right) child of v;.

We will use Lemma A.1 of [2], which is given below:

Lemma 1 (Lemma A.1 of [2]). Let p = 0.48. For any left subtree o and right
subtree 8 of a spine, |a|P +|BIP < (1—6)nP, for any constant §, 0 < § < 0.0004.

An outerplanar graph is a planar graph for which there exists an embedding
with all vertices on the exterior face. Throughout this paper, by the term out-
erplanar graph we will mean a mazimal outerplanar graph, i.e., an outerplanar
graph to which no edge can be added without destroying its outerplanarity. It is
easy to see that each internal face of a maximal outerplanar graph is a triangle.
Two vertices of a graph are meighbors, if they are connected by an edge. The
dual tree T of an outerplanar graph G is defined as follows:

— there is a one-to-one correspondence between the nodes of T and the inter-
nal faces of G, and



— there is an edge e = (u,v) in T if and only if the faces of G corresponding
to u and v share an edge € on their boundaries. e and €’ are duals of each
other.

For example, Figure 1(b), shows the dual tree of the outerplanar graph of
Figure 1(a).

Fig. 1. (a) An outerplanar graph G. Here, H, K1, K2, K1, K3, L1, La, My, N1, Na,
N3, Nua, Qe1, Qe2, Qes, and Qes are subgraphs of G, and are themselves outerplanar
graphs. (b) The dual tree Tg of G. The edges of Tg are shown with dark lines. Note
that vovi ...v13 is a spine of Tq.

Let P = vgv; ...vq be a path of T. Let H be the subgraph of G correspond-
ing to P. A beam drawing of H is shown in Figure 2, where the vertices of H are
placed on two horizontal channels, and the faces of H are drawn as triangles.

A line-segment with end-points a and b is a flat line-segment if ¢ and b are grid
points, and either belong to the same horizontal channel, or belong to adjacent
horizontal channels.

Let B be a flat line-segment with end-points a and b, such that b is at least
one unit to the right of a. Let G be an outerplanar graph with two distinguished
adjacent vertices u and v, such that the edge (u,v) is on the external face of G;
u and v are called the poles of G. Let D be a planar straight-line drawing of G.
D is a feasible drawing of G with base B if:

— the two poles of G are mapped to a and b each,

— each non-pole vertex of G is placed at least one unit above the lower of a
and b, and is placed at least one unit to the right of a and at least one unit
to the left of b.



(b)

Fig.2. (a) A path P and its corresponding graph H. (b) A beam drawing of H.

4 Outerplanar Graph Drawing Algorithm

The drawing algorithm, which we call Algorithm OpDraw, is recursive in nature.
In each recursive step, it takes as input an outerplanar graph G with pre-specified
poles, and a long-enough flat line-segment B, and constructs a feasible drawing
D of G with base B by constructing a drawing M of the subgraph Z correspond-
ing to a spine of T, splitting GG into several smaller outerplanar graphs after
removing Z and some other vertices from it, constructing feasible drawings of
each smaller outerplanar graph, and then combining their drawings with M to
obtain D.

We now give the details of the actions performed by Algorithm OpDraw in
each recursive step (see Figure 3)(a):

— Let u and v be the poles of G. Let T be the dual tree of G. Let r be the
node of T that corresponds to the internal face F' of G that contains both
u and v. Convert T into an ordered tree as follows:

e make T a rooted tree by making r its root,

e and for each node w, let w’ be the parent of w in T (which now is a
rooted tree). Let ¢ (d) be the children of w such that the face corre-
sponding to ¢ immediately follows (precedes) the face corresponding to
w’ in the counter-clockwise order of internal faces incident on the face
corresponding to w. Make c¢ the leftmost child of w, and d the rightmost
child of w. Assign the children of w the same left-to-right order as the
counter-clockwise order in which the faces that correspond to them are
incident on the face corresponding to w.

Note that T is a binary tree because each internal face of G is a triangle.
— Draw F as a triangle such that u and v coincide with the end-points of B,
and the third vertex w of F is placed one unit above the lower of v and v.



Fig. 3. The drawing of the outerplanar graph of Figure 1(a) constructed by Algorithm
OpDraw: (a) When v is one unit above u, (b) when u and v are in the same horizontal
channel, and (c) when u is one unit above v.



(We will determine later on the horizontal distances of w from u and v, when
we analyze the area-requirement of the drawing.) In the rest of this section,
we will assume that v is placed one unit above u. (The cases, where u and v
are in the same horizontal channel, and where u is placed one unit above v
are similar, and are shown in Figures 3(b) and 3(c), respectively).

Let P = vov ... vq be the spine of G, where vy = r. Assume that the edge
(vo,v1) is the dual of edge (v, w) (the case where (vg, v1) is the dual of edge
(u,w) is symmetrical). Let (vp,v’) be the dual of edge (u,w). Let H be the
subgraph of G corresponding to the subtree of Tg rooted at v’. Recursively
construct a feasible drawing Dy of H with ww as the base.

Let co = w, ¢, .., cm(=¢), 1, Ch, - . -, €& be the clockwise order of the neigh-
bors of v different from u, where, for each 7 (1 < i < m), the face ¢;_ic;v
corresponds to the spine node v;, and for each i (1 <17 < s), the face ¢,_;cjv
corresponds to a non-spine node v; of Tz. (In Figure 3(a), m = 3, and s = 2.)
Place the vertices ¢, ..., cm (= ¢p), ¢}, ch, - . -, ¢ in the same horizontal chan-
nel one unit above w. (We will determine later on the horizontal distances
between these vertices.)

Let (v;,x;) be the dual of edge (c;—1,¢;). Let K; be the subgraph of G
corresponding to the subtree of T rooted at z;. For each i, where 1 < ¢ <
m — 1, recursively construct a feasible drawing of K; with ¢;_1¢; as the base.
Let (v}, z}) be the dual of edge (c_;,c;). Let K, be the subgraph of G
corresponding to the subtree of T rooted at x;. For each ¢, where 1 <1 < s,
recursively construct a feasible drawing D] of K with ¢,_, ¢} as the base.
Let ag, a1, . .., a; be the vertices of K,,, such that ag, a1,...,ap (0 < h < 1)
is the clockwise order of the neighbors of ¢, 1 in K,,,, and ap, apt1,...,04 18
the clockwise order of the neighbors of ¢, in K,,. For example, in Figure 3(a),
h =4, and t = 5. Let j be the index such that the dual of edge (oj_1, ;)
belongs to P (if no such j exists, then we can do the following: if K, consists
of only one internal face, namely, ¢, 1¢m g, then set j = 0. Otherwise, the
leaf v, of P will correspond to either the face agav1c,—1 or the face oy—1aicm;
in the first case, set j = 1, and in the second case, set j = t). For example, in

Figure 3(a), j = 3. Place ag, a1, ..., o;j_1 in the same horizontal channel, and
01,04, ..,0; along a line making 45° angle with the horizontal channels,
such that

e ( is in the same vertical channel as ¢,,, and at least one unit above the
horizontal channel X occupied by ¢, (we will give the exact value of the
vertical distance between a; and X a little while later),

e for each k, where j —1 < k <t —1, o is one unit above and one unit
to the left of ax41, and

® oy is in the same vertical channel as ¢,,_1.

(We will determine later on the horizontal distances between ag, a1, ..., 05 1.)
For each ¢, where 0 < ¢ < ¢, removing «;—1 and «;, splits K,, into two

subgraphs, one containing ¢,,—1 and ¢, and another subgraph L. Let L;

be the subgraph of K,, consisting of the vertices of L}, o;_; and «;, and

the edges between them. Recursively construct a feasible drawing of each

L;, where 0 < ¢ < j— 1, with @;_7105 as the base.



— Let S = Bo, B1,- .., B be the clockwise order of the neighbors of a1, j, ..., 04
in the subgraphs L;, L;1, ..., L;, where each 8y is different from o;_1, o5, ..., 04.
In S, we first place the neighbors of a;_1, then of o, and so on, finally plac-
ing the neighbors of a;. For each k, where j — 1 < k < t, we place the
neighbors of ay into S in the same order as their clockwise order around ay.
For example, in Figure 3(a), 4 = 8. Let € be the index such that the dual
of the edge (B.-1,0.) belongs to P (if no such € exists, then we can do the
following: if L; consists of only one internal face, namely, a;_1a; 50, then set
€ = 0. Otherwise, the leaf vy of P will correspond to either the face SoB810;-1
or the face 8,_18,0;; in the first case, set € = 1, and in the second case, set
€ = u). For example, in Figure 3(a), € = 2.

— Place By, B1,- - -, Bc—1 in the same horizontal channel from left-to-right, and
place B¢, Be+1,---,By in another horizontal channel from right-to-left, such
that:

® Bo,B1,...,B—1 are placed one unit above a;;_1,

® B¢, Bes1,- -+, By are placed one unit below ay,

e [y and B, are at either to the right of, or on the same vertical channel
as cl,

e (B._1 and (. are on the same vertical channel, and
e the distance between 8. ; and ¢ is equal to 2 plus the vertical distance
between o;_; and o;.

— For each i, where 0 < i < e — 1, if there is an edge e = (8;_1,8;) in G, then
do the following: Notice that removing e from G, split it into two subgraphs,
one that contains o;_1,@;,...,a;, and another subgraph M; that does not
contain any of them. Let M; be the subgraph of G consisting of 3;_1, B;, the
vertices of M/, and the edges between them. Recursively construct a feasible
drawing of M; with 5;_105; as its base.

— For each i, where € < ¢ < p, if there is an edge e = (8;_1,8;) in G, then do
the following: Notice that removing e from G, splits it into two subgraphs,
one that contains a;_1,a;,..., 0, and another subgraph N} that does not
contain any of them. Let N; be the subgraph of G consisting of 5; 1, 8;, the
vertices of N}, and the edges between them. Recursively construct a feasible
drawing D} of N; with 3; 10; as its base, and then flip D} upside-down.

— Let (v,_1,v,) be the edge of P that is the dual of the edge (8e—1,5). For
example, in Figure 1(b), p = 9. Let R be the subgraph of G that corresponds
to the subpath v,v,41...v4. Construct a beam drawing E of R. For each
edge e on the external face of R, do the following: Let e = (1, ¥2). Removing
71 and 7y, from G splits it into two subgraphs, one containing 5o, 81, .- ., By,
and the other subgraph @, not containing them. Let Q. be the subgraph of
G containing «y1, v2, and the vertices of @), and the edges between them. If e
is on the top or bottom boundary of F, then recursively construct a feasible
drawing D, of Q). with 7773 as its base. If e is on the bottom boundary of
E, then flip Q. upside down. (Note that if e is on the right boundary of E,
then Q. will contain just the edge e because vy is a leaf of T¢.)

— We are now ready to give the vertical distance between a; and X: it is equal

to 140, where 0 is maximum height of any of D}, D!, and D., where e is on




the bottom boundary of E. Note that this will guarantee that the vertices
of each D} and D, will occupy horizontal channels that are either above
or the same as the horizontal channel that contains ¢y = w,c1,...,cm(=
€p)sChs Chy o .., . This ensures that there are no crossings between the edges

of any D; or De, and any edge of the form (v, c}).

Let h(n) and w(n) be the height and width, respectively, of a feasible drawing
D of G with base B, constructed by the Algorithm OpDraw. Here, n is the
number of vertices in G. Let d be the degree of G. Note that, by the definition
of feasible drawings, w(n) will be equal to one plus the horizontal separation
between the end-points of B.

It is easy to prove using induction that w(n) = n is sufficient. As for the
horizontal distances between u and w, between ¢;_; and ¢; (for 1 < i <m —1),
between ¢} _; and ¢ (for 1 < ¢ < s), between a;_; and o; (for 1 <4 < j—1),
between ;1 and 3; (for 1 <i < e—1), and between 8; ; and 3; (for e+1 < <
1), it is sufficient to set them to be equal to |H| -1, |K;| -1, |K}| —1, |L;] - 1,
|M;|—1, and |N;| —1, respectively. It is also sufficient to set the distance between
the end-points of each edge e on the top or bottom boundary of E, to be equal
to |Qe| — 1.

As for h(n), first notice that, because G has degree d, t — (j — 1) is less than
2d, and hence, the distance between B._; and S, is less than 2d + 2.

Let A' be a function, such that hA'(f) = h(n), where f is the number of
internal faces in G, i.e., the number of nodes in the dual tree T of G.

From the construction of D, we have that:

(f) < max{ max (1T )}, max {W(1T)}, max W (1To.D}

edge e on bottom boundary of E

+max{h(Tal), | max {(K( T )}, max {W(Tw)}, max {8(1Tas ),

1<

max {'(ITq.N}} + O(d),

edge e on top boundary of E

Since P is a spine of Tg, and

— the dual trees of H, K;, L;, M;, and Q. (in the case when edge e is on
top boundary of E), are either right subtrees of P, or belong to the right
subtrees of P, and

— the dual trees of K], N;, and Q. (in the case when edge e is on bottom
boundary of E), are either left subtrees of P, or belong to the left subtrees
of P,

from Lemma 1, it follows that:

W<, e JHGA) 4R (F) + O(d)}

Using induction, we can show that h/(f) = O(df**®) (see also [2]). Since
f=0(n), h(n) = K (f) = O(df**®) = O(dn®*®).



Theorem 1. Let G be an outerplanar graph with degree d and n vertices. We
can construct a planar straight-line grid drawing of G with area O(dn'*®) in
O(n) time.

Proof. Arbitrarily select any edge e = (u,v) on the external face of G, and
designate u and v as the poles of G. Let B be any horizontal line-segment with
length n — 1, such that the end-points of B are grid points. Let § be any user-
defined constant in the range (0,0.0004]. Construct a feasible drawing of G with
base B using Algorithm OpDraw. From the discussion given above, it follows
immediately that the area of the drawing is O(dn!t%4®) = O(dn'*®). It is easy
to see the algorithm runs in O(n) time.

Corollary 1. Let G be an outerplanar graph with n vertices and degree d, where
d = o(n%%%). We can construct a planar straight-line grid drawing of G with
o(n?) area in O(n) time.
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